热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题 · 12 分

已知椭圆:的一个焦点为,而且过点.

求椭圆的方程;

设椭圆的上下顶点分别为,是椭圆上异于

的任一点,直线分别交轴于点,若直线

与过点的圆相切,切点为.证明:线段的长

为定值,并求出该定值.

第(1)小题正确答案及相关解析

正确答案

解析

试题分析:本题属于圆锥曲线的基本问题,题目的难度是逐渐由易到难,由方程思想求解出标准方程;

解法一:由题意得,,解得,所以椭圆的方程为.   解法二:椭圆的两个焦点分别为,由椭圆的定义可得,所以,,   所以椭圆的方程为.

考查方向

本题考查了求椭圆的方程和定值的证明问题,属于高考的热点问题,圆锥曲线常见的问题有弦长、中点、面积、角度和“定”问题——定点、定线和定值。

解题思路

本题考查圆锥曲线中求标准方程的方法和定值问题,解题步骤如下:由方程思想求解出标准方程;

易错点

无法理顺题设的关系导致解题受阻。

第(2)小题正确答案及相关解析

正确答案

解析

试题分析:本题属于圆锥曲线的基本问题,题目的难度是逐渐由易到难,根据题设求出与半径的长,再由垂径定理求出解法一:由(1)可知,设,直线:,令,得;直线:,令,得; …(6分) 设圆的圆心为,则,

,所以,所以,

所以,即线段的长度为定值.

解法二:由(Ⅰ)可知,设,

直线:,令,得;

直线:,令,得;则,而,所以,

所以,由切割线定理得所以,即线段的长度为定值

考查方向

本题考查了求椭圆的方程和定值的证明问题,属于高考的热点问题,圆锥曲线常见的问题有弦长、中点、面积、角度和“定”问题——定点、定线和定值。

解题思路

本题考查圆锥曲线中求标准方程的方法和定值问题,解题步骤如下:构建的求解方法——垂径定理。

易错点

无法理顺题设的关系导致解题受阻。

1
题型:简答题
|
简答题 · 13 分

已知椭圆的左右顶点分别为,点为椭圆上异于的任意一点.

24.求直线的斜率之积;

25.过点作与轴不重合的任意直线交椭圆两点.证明:以为直径的圆恒过点.

第(1)小题正确答案及相关解析

正确答案

直线的斜率之积为

解析

由题可得.  设点.

则有,即

考查方向

通过椭圆的定义及几何性质,直线与椭圆的位置关系等知识,考查考生数形结合及函数与方程的思想方法,同时也考查考生推理运算求解能力、等价转化思想,是近几年的高频考点,也是高考中圆锥曲线必不可少的内容。

解题思路

解题步骤如下:由椭圆的方程,可得到A ,B两点的坐标,设出点P(xy),即可表示出直线的斜率,将其代入椭圆方程,容易得出结论;

易错点

本题是综合性比较强的大题,涉及到的的知识点比较多,计算量较大,所以在计算时易发生错误 。

第(2)小题正确答案及相关解析

正确答案

见解析

解析

轴不重合, ∴设直线.由   得

由题意,可知成立,且 

   将(*)代入上式,化简得

,即以为直径的圆恒过点

考查方向

通过椭圆的定义及几何性质,直线与椭圆的位置关系等知识,考查考生数形结合及函数与方程的思想方法,同时也考查考生推理运算求解能力、等价转化思想,是近几年的高频考点,也是高考中圆锥曲线必不可少的内容。

解题思路

解题步骤如下:要证明以为直径的圆恒过点,只需证明即可.由于直线过点,由题可设直线l的方程,即代入到椭圆方程消去x,即可得到关于y的一元二次方程,再利用根与系数之间的关系,化简,,最后得0,即可证明结论。

易错点

本题是综合性比较强的大题,涉及到的的知识点比较多,计算量较大,所以在计算时易发生错误 。

1
题型:简答题
|
简答题 · 13 分

已知椭圆的左右顶点分别为,点为椭圆上异于的任意一点.

24.求直线的斜率之积;

25.设,过点作与轴不重合的任意直线交椭圆两点.则是否存在实数,使得以为直径的圆恒过点?若存在,求出的值;若不存在,请说明理由。

第(1)小题正确答案及相关解析

正确答案

直线的斜率之积为

解析

.设点. 则有,即

考查方向

通过椭圆的定义及几何性质,直线与椭圆的位置关系等知识,考查考生数形结合及函数与方程的思想方法,同时也考查考生推理运算求解能力、等价转化思想,是近几年的高频考点,也是高考中圆锥曲线必不可少的内容。

解题思路

解题步骤如下:由椭圆的方程,可得到A ,B两点的坐标,设出点P(xy),即可表示出直线的斜率,将其代入椭圆方程,化简即可得出结论;

易错点

本题是综合性比较强的大题,涉及到的的知识点比较多,计算量较大,所以在计算时易发生错误 。

第(2)小题正确答案及相关解析

正确答案

存在,满足题意.

解析

解析】令.轴不重合,∴设.

[来源:Zxxk.Com]

    由题意,得.即 

将(*)式代入上式,得

展开,得

整理,得.解得(舍去).

经检验,能使成立.故存在,满足题意.

考查方向

通过椭圆的定义及几何性质,直线与椭圆的位置关系等知识,考查考生数形结合及函数与方程的思想方法,同时也考查考生推理运算求解能力、等价转化思想,是近几年的高频考点,也是高考中圆锥曲线必不可少的内容。

解题思路

解题步骤如下:要满足以为直径的圆恒过点,只需满足即可.由于直线过点,由题可设出直线l的方程,即代入到椭圆方程消去x,即可得到关于y的一元二次方程,再利用根与系数之间的关系,化简,,最后得0,即可证明结论。

易错点

本题是综合性比较强的大题,涉及到的的知识点比较多,计算量较大,所以在计算时易发生错误 。

1
题型:简答题
|
简答题 · 12 分

已知为椭圆上的一个动点,弦分别过左右焦点,且当线段的中点在轴上时,.

23.求该椭圆的离心率;

24.设,试判断是否为定值?若是定值,求出该定值,并给出证明;若不是定值,请说明理由.

第(1)小题正确答案及相关解析

正确答案

.e=

解析

当线段A的中点在y轴上时,AC垂直于轴,为直角三角形.

因为cos∠,所以||=3||,易知||=,由椭圆的定义||+||=2a

,所以e=

考查方向

本题主要考查的是椭圆的离心率,直线与椭圆的位置关系、解析几何定值问题

解题思路

先证出为直角三角形,求出,再由定义得到a,b方程, 从中解出离心率

易错点

解析几何易出现对于直线方程的分类讨论上的错,其次就是直线与曲线联系以后,寻求向量、坐标、常数、参数之间的联系时,易出现转化和计算、代数整理上的错误。

第(2)小题正确答案及相关解析

正确答案

+是定值6

解析

由23得椭圆方程为,焦点坐标为

(1)    当AB、AC的斜率都存在时,设,A()、B()、C()

则直线AC的方程为y=, 代入椭圆方程得,=0

 又,同理,+=6.

(2) 若AB⊥x轴,则=1,,这时也有.+=6.

综上所述,+是定值6

考查方向

本题主要考查的是椭圆的离心率,直线与椭圆的位置关系、解析几何定值问题

解题思路

由23得到含有b的椭圆方程,根据题意对直线AB、AC的斜率进行分为讨论,设出坐标,联立方程组,利用根与系数关系,结合向量关系式,将向量关系转化为坐标关系,用A的坐标及b,表求,验证是否为定值。

易错点

解析几何易出现对于直线方程的分类讨论上的错,其次就是直线与曲线联系以后,寻求向量、坐标、常数、参数之间的联系时,易出现转化和计算、代数整理上的错误。

1
题型:简答题
|
简答题 · 12 分

已知为椭圆上的一个动点,弦分别过左右焦点,且当线段的中点在轴上时,.

24.求该椭圆的离心率;

25.设,试判断是否为定值?若是定值,求出该定值,并给出证明;若不是定值,请说明理由.

第(1)小题正确答案及相关解析

正确答案

.e=

解析

当线段A的中点在y轴上时,AC垂直于轴,为直角三角形.

因为cos∠,所以||=3||,易知||=,由椭圆的定义||+||=2a

,所以e=

考查方向

本题主要考查的是椭圆的离心率,直线与椭圆的位置关系、解析几何定值问题

解题思路

先证出为直角三角形,求出,再由定义得到a,b方程, 从中解出离心率

易错点

解析几何易出现对于直线方程的分类讨论上的错,其次就是直线与曲线联系以后,寻求向量、坐标、常数、参数之间的联系时,易出现转化和计算、代数整理上的错误。

第(2)小题正确答案及相关解析

正确答案

+是定值6

解析

由24得椭圆方程为,焦点坐标为,当AB、AC的斜率都存在时,设,A()、B()、C()

则直线AC的方程为y=, 代入椭圆方程得,=0

 又,同理,+=6

(2) 若AB⊥x轴,则=1,,这时也有.+=6.

综上所述,+是定值6

考查方向

本题主要考查的是椭圆的离心率,直线与椭圆的位置关系、解析几何定值问题

解题思路

由24得到含有b的椭圆方程,根据题意对直线AB、AC的斜率进行分为讨论,设出坐标,联立方程组,利用根与系数关系,结合向量关系式,将向量关系转化为坐标关系,用A的坐标及b,表求,验证是否为定值。

易错点

解析几何易出现对于直线方程的分类讨论上的错,其次就是直线与曲线联系以后,寻求向量、坐标、常数、参数之间的联系时,易出现转化和计算、代数整理上的错误。

下一知识点 : 圆锥曲线中的探索性问题
百度题库 > 高考 > 理科数学 > 圆锥曲线的定点、定值问题

扫码查看完整答案与解析

  • 上一题
  • 1/5
  • 下一题