- 圆锥曲线的定点、定值问题
- 共61题
已知椭圆



求椭圆
设椭圆











为定值,并求出该定值.
正确答案

解析
试题分析:本题属于圆锥曲线的基本问题,题目的难度是逐渐由易到难,由方程思想求解出标准方程;
解法一:由题意得










考查方向
解题思路
本题考查圆锥曲线中求标准方程的方法和定值问题,解题步骤如下:由方程思想求解出标准方程;
易错点
无法理顺题设的关系导致解题受阻。
正确答案
解析
试题分析:本题属于圆锥曲线的基本问题,题目的难度是逐渐由易到难,根据题设求出














而


所以


解法二:由(Ⅰ)可知

直线



直线






所以



考查方向
解题思路
本题考查圆锥曲线中求标准方程的方法和定值问题,解题步骤如下:构建
易错点
无法理顺题设的关系导致解题受阻。
已知椭圆




24.求直线

25.过点






正确答案
直线


解析
由题可得

则有
考查方向
解题思路
解题步骤如下:由椭圆的方程,可得到A ,B两点的坐标,设出点P(x,y),即可表示出直线

易错点
本题是综合性比较强的大题,涉及到的的知识点比较多,计算量较大,所以在计算时易发生错误 。
正确答案
见解析
解析
设





由题意,可知


∴


考查方向
解题思路
解题步骤如下:要证明以





易错点
本题是综合性比较强的大题,涉及到的的知识点比较多,计算量较大,所以在计算时易发生错误 。
已知椭圆




24.求直线


25.设









正确答案
直线


解析



考查方向
解题思路
解题步骤如下:由椭圆的方程,可得到A ,B两点的坐标,设出点P(x,y),即可表示出直线

易错点
本题是综合性比较强的大题,涉及到的的知识点比较多,计算量较大,所以在计算时易发生错误 。
正确答案
存在
解析
【解析】令




由




将(*)式代入上式,得
即
展开,得
整理,得


经检验,


考查方向
解题思路
解题步骤如下:要满足以





易错点
本题是综合性比较强的大题,涉及到的的知识点比较多,计算量较大,所以在计算时易发生错误 。
已知






23.求该椭圆的离心率;
24.设

正确答案
.e=
解析
当线段A


因为cos∠







考查方向
解题思路
先证出

易错点
解析几何易出现对于直线方程的分类讨论上的错,其次就是直线与曲线联系以后,寻求向量、坐标、常数、参数之间的联系时,易出现转化和计算、代数整理上的错误。
正确答案


解析
由23得椭圆方程为
(1) 当AB、AC的斜率都存在时,设,A(


则直线AC的方程为y=






(2) 若AB⊥x轴,则



综上所述,

考查方向
解题思路
由23得到含有b的椭圆方程,根据题意对直线AB、AC的斜率进行分为讨论,设出坐标,联立方程组,利用根与系数关系,结合向量关系式,将向量关系转化为坐标关系,用A的坐标及b,表求

易错点
解析几何易出现对于直线方程的分类讨论上的错,其次就是直线与曲线联系以后,寻求向量、坐标、常数、参数之间的联系时,易出现转化和计算、代数整理上的错误。
已知






24.求该椭圆的离心率;
25.设

正确答案
.e=
解析
当线段A


因为cos∠







考查方向
解题思路
先证出

易错点
解析几何易出现对于直线方程的分类讨论上的错,其次就是直线与曲线联系以后,寻求向量、坐标、常数、参数之间的联系时,易出现转化和计算、代数整理上的错误。
正确答案


解析
由24得椭圆方程为




则直线AC的方程为y=






(2) 若AB⊥x轴,则



综上所述,

考查方向
解题思路
由24得到含有b的椭圆方程,根据题意对直线AB、AC的斜率进行分为讨论,设出坐标,联立方程组,利用根与系数关系,结合向量关系式,将向量关系转化为坐标关系,用A的坐标及b,表求

易错点
解析几何易出现对于直线方程的分类讨论上的错,其次就是直线与曲线联系以后,寻求向量、坐标、常数、参数之间的联系时,易出现转化和计算、代数整理上的错误。
扫码查看完整答案与解析
































