- 曲线与方程
- 共215题
已知定点,直线
,点
为坐标平面上的动点,过点
作直线
的垂线,垂足为点
,且
,设动点
的轨迹为曲线
。
(1)求曲线的方程;
(2)过点的直线
与曲线
有两个不同的交点
、
,求证:
;
(3)记与
的夹角为
(
为坐标原点,
、
为(2)中的两点),求
的取值范围。
正确答案
见解析
解析
(1)设点的坐标为
。 (1分)
由题意,可得,
,
,
,(3分)
由与
垂直,得
,即
(
)。 (6分)
因此,所求曲线的方程为
(
)。
(2)因为过点的直线
与曲线
有两个不同的交点
、
,所以
的斜率不为零,故设直线
的方程为
。 (7分)
于是、
的坐标
、
为方程组
的实数解。
消并整理得
, (8分)
于是进一步得
(10分)
又因为曲线(
)的准线为
,
所以,得证。 (12分)
(3)由(2)可知,,
。
于是,
(16分)可求得的取值范围为
。 (18分)
知识点
在平面直角坐标系中,为坐标原点,已知曲线
上任意一点
(其中
)到定点
的距离比它到
轴的距离大1.
(1)求曲线的轨迹方程;
(2)若过点的直线
与曲线
相交于不同的
两点,求
的值;
(3)若曲线上不同的两点
、
满足
求
的取值范围。
正确答案
见解析
解析
(1)依题意知,动点到定点
的距离等于
到直线
的距离,曲线
是
以原点为顶点,为焦点的抛物线………(2分)
∵
∴
∴ 曲线方程是
………(4分)
(2)当平行于
轴时,其方程为
,由
解得
、
此时 ………(6分)
当不平行于
轴时,设其斜率为
,
则由 得
设则有
,
………(8分)
∴
………(10分)
(3)设
∴ ………(12分)
∵
∴
∵,化简得
∴ ………(14分)
当且仅当 时等号成立
∵
∴当的取值范围是
………(16分)
知识点
已知两点、
,点
是直角坐标平面上的动点,若将点
的横坐标保持不变、纵坐标扩大到
倍后得到点
满足
。
(1) 求动点所在曲线
的轨迹方程;
(2)过点作斜率为
的直线
交曲线
于
两点,且满足
,又点
关于原点O的对称点为点
,试问四点
是否共圆,若共圆,求出圆心坐标和半径;若不共圆,请说明理由。
正确答案
见解析
解析
(1)依据题意,有。
∵,
∴。
∴动点P所在曲线C的轨迹方程是。
(2)因直线过点
,且斜率为
,
故有,联立方程组
,得
。
设两曲线的交点为、
,可算得
。
又,点
与点
关于原点对称,
于是,可得点、
。
若线段、
的中垂线分别为
和
,则有
,
。
联立方程组,解得
和
的交点为
。
因此,可算得,
。
所以,四点共圆,圆心坐标为
,半径为
。
知识点
已知实数m>0,定点A(-m,0),B(m,0),s为一动点,直线SA与直线SB的斜率之积
为
(1)求动点s的轨迹C的方程,并指出它是哪一种曲线;
(2)当时,问t取何值时,直线l:2x-y+t=O (t∈R)与曲线C有且只有一个交点?
正确答案
见解析。
解析
(1)设S(x,y),则
由题意得即
当O<m<1时,轨迹C是中心在坐标原点,焦点在y轴上的椭圆(除去椭圆与x轴的两个交点);
当m>l时,轨迹C是中心在坐标原点,焦点在,轴上的椭圆(除去椭圆与x轴的两个交点):
当m=l时,轨迹C是以原点为圆心,半径为l的圆(除去圆与x轴的两个交点)。
(2)当时,曲线C的方程为
由消去y得
①令得t=±3。
此时直线l与曲线C有且只有一个公共点,
②令△>0且直线2x-y+1=O恰好过点(,0)时,
此时直线与曲线C有且只有一个公共点,
综上所述,当t=±3或时,直线l与曲线C有且只有一个公共点,
知识点
已知平面内一动点到椭圆
的右焦点
的距离与到直线
的距离相等。
(1)求动点的轨迹
的方程;
(2)过点(
)作倾斜角为
的直线与曲线
相交于
,
两点,若点
始终在以线段
为直径的圆内,求实数
的取值范围;
(3)过点(
)作直线与曲线
相交于
,
两点,问:是否存在一条垂直于
轴的直线与以线段
为直径的圆始终相切?若存在,求出所有
的值;若不存在,请说明理由﹒
正确答案
见解析
解析
(1)易知椭圆的右焦点坐标为。
由抛物线的定义,知P点的轨迹是以为焦点,直线
为准线的抛物线。
所以,动点P的轨迹C的方程为。 ……………………………………4分
(2)由题意知,直线AB的方程为。
代入,得
。
设,则
。
因为点始终在以线段
为直径的圆内,
为钝角。
又,
,
,
。
即,
。
因此,
。
综上,实数的取值范围是
。
(3)设过点的直线方程为
,代入
,得
,设
,则
,
。
于是。
的中点坐标为
又
。
设存在直线满足条件,则
。
化简,得。
所以,对任意的
恒成立,
所以
解得,
。
所以,当时,存在直线
与以线段
为直径的圆始终相切,…………13分
知识点
已知椭圆的离心率为,直线
:
与以原点为圆心、以椭圆
的短半轴长为半径的圆相切。
(1)求椭圆的方程;
(2)设椭圆的左焦点为
,右焦点
,直线
过点
且垂直于椭圆的长轴,动直线
垂直
于点
,线段
垂直平分线交
于点
,求点
的轨迹
的方程;
(3)当P不在轴上时,在曲线
上是否存在两个不同点C、D关于
对称,若存在,求出
的斜率范围,若不存在,说明理由。
正确答案
见解析
解析
(1)∵
∵直线相切,
∴ ∴
∵椭圆C1的方程是
(2)∵MP=MF2,
∴动点M到定直线的距离等于它到定点F1(1,0)的距离,
∴动点M的轨迹是C为l1准线,F2为焦点的抛物线
∴点M的轨迹C2的方程为
(3)显然不与
轴垂直,设
(
,
),
(
,
),且
≠
,则
=
。
若存在C、D关于对称,则
=-
∵
≠0,∴
≠0
设线段的中点为
,则
=
(
+
)=
,
=
,
将代入
方程
求得:
=-
(
-
)=
(
-
)
∵-
=
-
≠1∴
≠
(
)=
∴线段
的中点
不在直线
上。
所以在曲线上不存在两个不同点C、D关于
对称
知识点
20. 如图,已知定点,点
是定直线
上的动点,∠
的角平分线交
于
.
(1)求点的轨迹方程;
(2)若(1)中轨迹上是否存在一点
,直线
与
,使得∠
是直角?如果存在,求点
坐标;如果不存在,请说明理由。
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
20.在平面直角坐标系中,从曲线
上一点
做
轴和
轴的垂线,垂足分别为
,点
(
为常数),且
(
)
(1)求曲线的轨迹
方程,并说明曲线
是什么图形;
(2)当且
时,将曲线
绕原点逆时针旋转
得到曲线
,曲线
与曲线
四个交点按逆时针依次为
,且点
在一象限,
①证明:四边形为正方形;
②若,求
值.
正确答案
解:(1)设,所以
,由
得
①当时,曲线
是焦点在
轴的双曲线;
②当时,曲线
是焦点在
轴的椭圆;
③当时,曲线
是圆
;
④当时,曲线
是焦点在
轴的椭圆;
(2)①当且
时,曲线
是椭圆,曲线
方程为
,
设所以两曲线四个交点坐标
,
所以四边形为正方形;
②设,当
时,
,解得
.
解析
解析已在路上飞奔,马上就到!
知识点
19.已知点F(1,0),直线:x=2,设动点P到直线
的距离为d,已知|PF|=
d且
(1)求动点P的轨迹方程;
(2)若=
,求向量
与
的夹角。
正确答案
(1)所求的点P轨迹方程为
(2)向量与
的夹角为
解析
解析已在路上飞奔,马上就到!
知识点
21.点F为(1,0),M点在x轴上,P点在y轴上,且,
(1)当点P在y轴上运动时,求N点的轨迹C的方程;
(2)设A(x1,y1)、B(x2,y2)、D(x3,y3)是曲线C上的三点,且、
|、
成等差数列,当AD的垂直平分线与x轴交于E(3,0)时,求B点的坐标.
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
扫码查看完整答案与解析