- 平面向量
- 共1314题
设函数f(x)=(x﹣1)2+blnx,其中b为常数。
(1)当时,判断函数f(x)在定义域上的单调性;
(2)若函数f(x)的有极值点,求b的取值范围及f(x)的极值点;
(3)求证对任意不小于3的正整数n,不等式都成立。
正确答案
见解析。
解析
(1)由题意知,f(x)的定义域为(0,+∞),
∴当时,f'(x)>0,函数f(x)在定义域(0,+∞)上单调递增。
(2)①由(Ⅰ)得,当时,函数f(x)在定义域上无极值点。
②时,有两个相同的解,时,
∴时,函数f(x)在(﹣1,+∞)上无极值点。
③当时,f'(x)=0有两个不同解,
∴(i)b≤0时,,,
此时f'(x),f(x)随x在定义域上的变化情况如表:
由
此表可知:∵b≤0时,f(x)有惟一极小值点,
(ii)当时,0<x1<x2<1
此时,f'(x),f(x)随x的变化情况如下表:
由此表可知:时,f(x)有一个极大值和一个极小值点;
综上所述:当且仅当时f(x)有极值点;
当b≤0时,f(x)有惟一最小值点;
当时,f(x)有一个极大值点和一个极小值点
(3)由(2)可知当b=﹣1时,函数f(x)=(x﹣1)2﹣lnx,
此时f(x)有惟一极小值点
且
令函数h(x)=(x﹣1)﹣lnx(x>0)
知识点
如图,平行四边形ABCD中,AB=2,AD=1,∠A=60°,点M在AB边上,且,则等于
正确答案
解析
略
知识点
已知向量, ,如果向量与垂直,则的值为( )
正确答案
解析
,∵,
∴,解得,
知识点
已知,二次函数,关于的不等式的解集为,其中为非零常数,设.
(1)求的值;
(2)若存在一条与轴垂直的直线和函数的图象相切,且切点的横坐标满足,求实数的取值范围;
(3)当实数取何值时,函数存在极值?并求出相应的极值点。
正确答案
见解析。
解析
(1),,
二次函数, …………………………………………………1分
关于的不等式的解集为,
也就是不等式的解集为,
∴和是方程的两个根。
由韦达定理得:
∴ …………………………………………………………………………………2分
(2)由(1)得,
,
存在一条与轴垂直的直线和的图象相切,且切点的横坐标为,
…………………………………………4分
, ………………………………………………………………5分
令,则
当时,,
在上为增函数
从而, …………………………………………7分
(3)的定义域为.
∴.
方程(*)的判别式
.
①若时,,方程(*)的两个实根为
或
则时,;时,.
∴函数在上单调递减,在上单调递增。
此时函数存在极小值,极小值点为,可取任意实数. ………………………9分
②若时,当,即时,恒成立,,在上为增函数,
此时在上没有极值 …………………………………………………………10分
下面只需考虑的情况
由,得或,
当,则
故时,,
∴函数在上单调递增。
∴函数没有极值. …………………………………………………………………11分
当时,
则时,;时,;时,.
∴函数在上单调递增,在上单调递减,在上单调递增。
此时函数存在极大值和极小值,极小值点,有极大值点.
综上所述, 若时,可取任意实数,此时函数有极小值且极小值点为;
若时,当 时,函数有极大值和极小值,此时极小值点为,极大值点为 (其中, )………………13分
知识点
随机变量ξ服从正态分布N(40, ),若P(ξ<30)=0.2,则P(30<ξ<50)= .
正确答案
0.6
解析
,
所以
知识点
非零向量,,,若向量,则的最大值为( )
正确答案
解析
略
知识点
已知向量向量与向量的夹角为,且.
(1)求向量 ;
(2)若向量与共线,向量,其中、为的内角,且、、依次成等差数列,求的取值范围。
正确答案
(1)(2)
解析
(1)设.由,得 ①……………………………………2分
又向量与向量的夹角为,得 ②……………………………4分
由①、②解得或,或.………………5分
(2)向量与共线知;……………………………………………6分
由知.………………………7分
, ……………………………8分
…………………………9分
.………11分
,…………12分
得,即,…………………………13分
.…………………………………………………………14分
知识点
若,且,则向量与的夹角为
正确答案
解析
因为,所以,即.所以,所以向量与的夹角的余弦值,所以,选C.
知识点
已知向量且,若变量x,y满足约束条件,则z的最大值为
正确答案
解析
由得(,1)(2,)=0,即z=2x+y,
画出不等式组的可行域,如右图,目标函数变为:,作出y=-2x的图象,并平移,图由可知,直线过A点时,在y轴上的截距最大,此时z的值最大:求出A点坐标(1,1)
=2×1+1=3,所以,选C。
知识点
在△ABC中,∠A=90°,AB=1,AC=2,设点P,Q满足,若,则λ= 。
正确答案
解析
由题意可得=0,因为,
由于=()•()=[(1﹣λ)]•[λ]
=0﹣(1﹣λ)﹣λ+0=(λ﹣1)4﹣λ×1=﹣2,
解得 λ=,
故答案为:。
知识点
已知非零向量、满足向量与向量的夹角为,那么下列结论中一定成立的是
正确答案
解析
因为向量与向量的夹角为,所以,即,所以,即,选B.
知识点
已知向量,,则与夹角的余弦值为 ( )
正确答案
解析
因为向量,,两式相加和相减可得,和;由数量积的定义式知,
知识点
在中,分别是角A、B、C的对边, ,且。
(1)求角A的大小;
(2)求的值域,
正确答案
见解析
解析
(1)由得
由正弦定理得
(2)
=
=
由(1)得
知识点
设m、n是两条不同的直线,、是两个不同的平面,则
正确答案
解析
因为两直线与同一平面平行,两直线位置关系不定,所以选项A错误.当直线平行于两相交平面的交线时,该直线与两平面皆平行,所以选项B错误.同样理由可得:选项D错误.当 m,则m内任一直线,因为m//n,所以n内任一直线,即n,因此选项C正确。
知识点
在中,.
(1)求的值;
(2)求的值。
正确答案
(1)(2)
解析
(1)因为 ,
(2)=
所以 ,
知识点
扫码查看完整答案与解析