- 直线、平面垂直的综合应用
- 共97题
1
题型:填空题
|
不等式的解集为___________。
正确答案
解析
略
知识点
直线、平面垂直的综合应用
1
题型:填空题
|
已知正方形ABCD的边长为1,点E是AB边上的动点,则的值为________,的最大值为______。
正确答案
1,1
解析
根据平面向量的数量积公式,由图可知,,因此,
,而就是向量在边上的射影,要想让最大,即让射影最大,此时E点与B点重合,射影为,所以长度为1。
知识点
直线、平面垂直的综合应用
1
题型:简答题
|
如图,在直三棱柱中,,
,若为的中点,求直线与平面所成的角。
正确答案
60°
解析
方法一:如图1以为原点,所在直线为轴,所在直线为轴,
所在直线为轴建系,则,则 ;
设平面A1BC1的一个法向量,则,
则,取,则
设AD与平面A1BC1所成的角为,
则=
则,∴AD与平面A1BC1所成的角为
方法二:由题意知四边形AA1B1B是正方形,故AB1⊥BA1。
由AA1⊥平面A1B1C1得AA1⊥A1C1。
又A1C1⊥A1B1,所以A1C1⊥平面AA1B1B,故A1C1⊥AB1。
从而得 AB1⊥平面A1BC1。
设AB1与A1B相交于点O,则点O是线段AB1的中点。
连接AC1,由题意知△AB1C1是正三角形。
由AD,C1O是△AB1C1的中线知:AD与C1O的交点为重心G,连接OG。
知AB1⊥平面A1BC1,故OG是AD在平面A1BC1上的射影,
于是∠AGO是AD与平面A1BC1所成的角。
在直角△AOG中,AG=AD=AB1=AB, AO=AB,
所以sin∠AGO==。
故∠AGO=60°,即AD与平面A1BC1所成的角为60°
知识点
直线、平面垂直的综合应用
1
题型:填空题
|
若函数的反函数为,则 。
正确答案
1
解析
略
知识点
直线、平面垂直的综合应用
1
题型:填空题
|
在平面直角坐标系中,曲线的参数方程为(为参数),为坐标原点,M为上的动点,P点满足,点P的轨迹为曲线,则的参数方程为 .
正确答案
(为参数)
解析
略
知识点
直线、平面垂直的综合应用
下一知识点 : 线面角和二面角的求法
扫码查看完整答案与解析