- 抛物线及其性质
- 共507题
4.已知圆,抛物线
的准线为,设抛物线上任意一点
到直线的距离为
,则
的最小值为( )
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
4.抛物线的准线方程是( )
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
20. 如图,是抛物线为
上的一点,弦SC,SD分别交x轴于A,B两点,且SA=SB。
(1)求证:直线CD的斜率为定值;
(2)延长DC交x轴于点E,若,求
的值。
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
15.若抛物线上不同三点的横坐标的平方成等差数列,那么这三点 ( )
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
21.如图,已知抛物线的焦点为
,过点
且斜率为
的直线交抛物线于
,
两点,直线
分别与抛物线交于点
(1)证明的值与
无关,并用
表示
;
(2)记直线的斜率为
,证明
为定值
正确答案
证明:(1)依题意,设直线的方程为
.
将其代入,消去
,
整理得 .
从而.
于是
∴与
无关,
又
(2)证明:设,
则 .
设直线的方程为
,
将其代入,消去
,
整理得
∴.
同理可得 .
故.
由(1)知,,
∴为定值.
解析
解析已在路上飞奔,马上就到!
知识点
20. 如图,抛物线与椭圆
交于第一象限内一点
,
为抛物线
的焦点,
分别为椭圆
的上下焦点,已知
。
(1)求抛物线和椭圆
的方程;
(2)是否存在经过M的直线,与抛物线和椭圆分别交于非M的两点
,使得
?若存在请求出直线的斜率,若不存在,请说明理由。
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
18.点在直线
上,若存在过
的直线交抛物线
于
两点,且
,则称点
为“
点”,那么下列结论中正确的是 ( )
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
9. 在抛物线上取横坐标为
,
的两点,经过两点引一条割线,有平行于该割线的一条直线同时与该抛物线和圆
相切,则抛物线的顶点坐标是( )
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
12. 定义:曲线上的点到直线
的距离的最小值称为曲线
到直线
的距离,已知曲线
到直线
的距离等于直线
到直线
的距离,则实数
( )
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
20. 已知圆N:和抛物线C:
,圆N的切线l与抛物线C交于不同的两点A,B.
(Ⅰ)当直线l的斜率为-1时,求线段AB的长;
(Ⅱ)设点M点N关于直线y=x对称,问是否存在直线l,使得⊥
?若存在,求出直线l的方程;若不存在,请说明理由.
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
扫码查看完整答案与解析