- 真题试卷
- 模拟试卷
- 预测试卷
7.用平行单色光垂直照射一层透明薄膜,观察到如图所示明暗相间的干涉条纹。下列关于该区域薄膜厚度d随坐标x的变化图像,可能正确的是( )
正确答案
1.在测定年代较近的湖泊沉积物形成年份时,常利用沉积物中半衰期较短的,其衰变方程为。以下说法正确的是( )
正确答案
2.如图所示,密封的矿泉水瓶中,距瓶口越近水的温度越高。一开口向下、导热良好的小瓶置于矿泉水瓶中,小瓶中封闭一段空气。挤压矿泉水瓶,小瓶下沉到底部;松开后,小瓶缓慢上浮,上浮过程中,小瓶内气体( )
正确答案
3.如图所示,粗糙程度处处相同的水平桌面上有一长为L的轻质细杆,一端可绕竖直光滑轴O转动,另一端与质量为m的小木块相连。木块以水平初速度出发,恰好能完成一个完整的圆周运动。在运动过程中,木块所受摩擦力的大小为( )
正确答案
4.血压仪由加压气囊、臂带、压强计等构成,如图所示。加压气囊可将外界空气充入臂带,压强计示数为臂带内气体的压强高于大气压强的数值,充气前臂带内气体压强为大气压强,体积为V;每次挤压气囊都能将的外界空气充入臂带中,经5次充气后,臂带内气体体积变为,压强计示数为。已知大气压强等于,气体温度不变。忽略细管和压强计内的气体体积。则V等于( )
正确答案
6.如图甲所示,边长为a的正方形,四个顶点上分别固定一个电荷量为的点电荷;在区间,x轴上电势的变化曲线如图乙所示。现将一电荷量为的点电荷P置于正方形的中心O点,此时每个点电荷所受库仑力的合力均为零。若将P沿x轴向右略微移动后,由静止释放,以下判断正确的是( )
正确答案
5.从“玉兔”登月到“祝融”探火,我国星际探测事业实现了由地月系到行星际的跨越。已知火星质量约为月球的9倍,半径约为月球的2倍,“祝融”火星车的质量约为“玉兔”月球车的2倍。在着陆前,“祝融”和“玉兔”都会经历一个由着陆平台支撑的悬停过程。悬停时,“祝融”与“玉兔”所受着陆平台的作用力大小之比为( )
正确答案
8.迷你系绳卫星在地球赤道正上方的电离层中,沿圆形轨道绕地飞行。系绳卫星由两子卫星组成,它们之间的导体绳沿地球半径方向,如图所示.在电池和感应电动势的共同作用下,导体绳中形成指向地心的电流,等效总电阻为r。导体绳所受的安培力克服大小为f的环境阻力,可使卫星保持在原轨道上。已知卫星离地平均高度为H,导体绳长为,地球半径为R、质量为M,轨道处磁感应强度大小为B,方向垂直于赤道平面。忽略地球自转的影响。据此可得,电池电动势为( )
正确答案
9.输电能耗演示电路如图所示。左侧变压器原、副线圈匝数比为1∶3,输入电压为的正弦交流电。连接两理想变压器的导线总电阻为r,负载R的阻值为。开关S接1时,右侧变压器原、副线圈匝数比为2∶1,R上的功率为;接2时,匝数比为1∶2,R上的功率为P。以下判断正确的是( )
正确答案
10.一列简谐横波沿x轴传播,如图所示,实线为时的波形图,虚线为时的波形图。以下关于平衡位置在O处质点的振动图像,可能正确的是( )
正确答案
11.如图所示,载有物资的热气球静止于距水平地面H的高处,现将质量为m的物资以相对地面的速度水平投出,落地时物资与热气球的距离为d。已知投出物资后热气球的总质量为M,所受浮力不变,重力加速度为g,不计阻力。以下判断正确的是( )
正确答案
12.如图所示,电阻不计的光滑U形金属导轨固定在绝缘斜面上。区域Ⅰ、Ⅱ中磁场方向均垂直斜面向上,Ⅰ区中磁感应强度随时间均匀增加,Ⅱ区中为匀强磁场。阻值恒定的金属棒从无磁场区域中a处由静止释放,进入Ⅱ区后,经b下行至c处反向上行。运动过程中金属棒始终垂直导轨且接触良好。在第一次下行和上行的过程中,以下叙述正确的是( )
正确答案
14.(8分)热敏电阻是传感器中经常使用的元件,某学习小组要探究一热敏电阻的阻值随温度变化的规律。可供选择的器材有:
待测热敏电阻(实验温度范围内,阻值约几百欧到几千欧);
电源E(电动势,内阻r约为);
电阻箱R(阻值范围);
滑动变阻器(最大阻值);
滑动变阻器(最大阻值);
微安表(量程,内阻等于);
开关两个,温控装置一套,导线若干。
同学们设计了如图甲所示的测量电路,主要实验步骤如下:
①按图示连接电路;
②闭合、,调节滑动变阻器滑片P的位置,使微安表指针满偏;
③保持滑动变阻器滑片P的位置不变,断开,调节电阻箱,使微安表指针半偏;
④记录此时的温度和电阻箱的阻值。
回答下列问题:
(1)为了更准确地测量热敏电阻的阻值,滑动变阻器应选用________(填“”或“”)。
(2)请用笔画线代替导线,在答题卡上将实物图(不含温控装置)连接成完整电路。
(3)某温度下微安表半偏时,电阻箱的读数为,该温度下热敏电阻的测量值为_______(结果保留到个位),该测量值________(填“大于”或“小于”)真实值。
(4)多次实验后,学习小组绘制了如图乙所示的图像。由图像可知,该热敏电阻的阻值随温度的升高逐渐_______(填“增大”或“减小”)。
正确答案
(1)
(2)如图所示
(3)3500,大于 (4)减小
13.(6分)某乒乓球爱好者,利用手机研究乒乓球与球台碰撞过程中能量损失的情况。实验步骤如下:
①固定好手机,打开录音功能;
②从一定高度由静止释放乒乓球;
③手机记录下乒乓球与台面碰撞的声音,其随时间(单位:s)的变化图像如图所示。
根据声音图像记录的碰撞次序及相应碰撞时刻,如下表所示。
根据实验数据,回答下列问题:
(1)利用碰撞时间间隔,计算出第3次碰撞后乒乓球的弹起高度为________m(保留2位有效数字,当地重力加速度)。
(2)设碰撞后弹起瞬间与该次碰撞前瞬间速度大小的比值为k,则每次碰撞损失的动能为碰撞前动能的______倍(用k表示),第3次碰撞过程中K=________(保留2位有效数字)。
(3)由于存在空气阻力,第(1)问中计算的弹起高度________(填“高于”或“低于”)实际弹起高度。
正确答案
(1)0.20 (2),0.95 (3)高于
16.(9分)海鸥捕到外壳坚硬的鸟蛤(贝类动物)后,有时会飞到空中将它丢下,利用地面的冲击打碎硬壳。一只海鸥叼着质量的鸟蛤,在的高度、以的水平速度飞行时,松开嘴巴让鸟蛤落到水平地面上。取重力加速度,忽略空气阻力。
(1)若鸟蛤与地面的碰撞时间,弹起速度可忽略,求碰撞过程中鸟蛤受到的平均作用力的大小F;(碰撞过程中不计重力)
(2)在海鸥飞行方向正下方的地面上,有一与地面平齐、长度的岩石,以岩石左端为坐标原点,建立如图所示坐标系。若海鸥水平飞行的高度仍为,速度大小在之间,为保证鸟蛤一定能落到岩石上,求释放鸟蛤位置的x坐标范围。
正确答案
(1)设平抛运动的时间为t,鸟蛤落地前瞬间的速度大小为v,竖直方向分速度大小为,根据运动的合成与分解得
①
②
③
在碰撞过程中,以鸟蛤为研究对象,取速度v的方向为正方向,由动量定理得
④
联立①②③④式,代入数据得
⑤
(2)若释放鸟蛤的初速度为,设击中岩石左端时,释放点的x坐标为x1,击中右端时,释放点的x坐标为,得
⑥
⑦
联立①⑥⑦式,代入数据得
⑧
若释放鸟蛤时的初速度为,设击中岩石左端时,释放点的x坐标为,击中右端时,释放点的x坐标为,得
⑨
⑩
联立①⑨⑩式,代入数据得
⑪
综上得x坐标区间
或 ⑫
15.(7分)超强超短光脉冲产生方法曾获诺贝尔物理学奖,其中用到的一种脉冲激光展宽器截面如图所示。在空气中对称放置四个相同的直角三棱镜,顶角为。一细束脉冲激光垂直第一个棱镜左侧面入射,经过前两个棱镜后分为平行的光束,再经过后两个棱镜重新合成为一束,此时不同频率的光前后分开,完成脉冲展宽。已知相邻两棱镜斜面间的距离,脉冲激光中包含两种频率的光,它们在棱镜中的折射率分别为和。取,,。
(1)为使两种频率的光都能从左侧第一个棱镜斜面射出,求的取值范围;
(2)若,求两种频率的光通过整个展宽器的过程中,在空气中的路程差(保留3位有效数字)。
正确答案
(1)设C是全反射的临界角,光线在第一个三棱镜右侧斜面上恰好发生全反射时,
根据折射定律得
①
代入较大的折射率得
②
所以顶角的范围为
(或) ③
(2)脉冲激光从第一个三棱镜右侧斜面射出时发生折射,设折射角分别为和,由折射定律得
④
⑤
设两束光在前两个三棱镜斜面之间的路程分别为和,则
⑥
⑦
⑧
联立④⑤⑥⑦⑧式,代入数据得
⑨
17.(14分)某离子束实验装置的基本原理如图甲所示。Ⅰ区宽度为d,左边界与x轴垂直交于坐标原点O,其内充满垂直于平面向里的匀强磁场,磁感应强度大小为;Ⅱ区宽度为L,左边界与x轴垂直交于点,右边界与x轴垂直交于点,其内充满沿y轴负方向的匀强电场。测试板垂直x轴置于Ⅱ区右边界,其中心C与点重合。从离子源不断飘出电荷量为q、质量为m的正离子,加速后沿x轴正方向过O点,依次经Ⅰ区、Ⅱ区,恰好到达测试板中心C。已知离子刚进入Ⅱ区时速度方向与x轴正方向的夹角为。忽略离子间的相互作用,不计重力。
(1)求离子在Ⅰ区中运动时速度的大小v;
(2)求Ⅱ区内电场强度的大小E;
(3)保持上述条件不变,将Ⅱ区分为左右两部分,分别填充磁感应强度大小均为B(数值未知)、方向相反且平行y轴的匀强磁场,如图乙所示。为使离子的运动轨迹与测试板相切于C点,需沿x轴移动测试板,求移动后C到的距离s。
正确答案
(1)设离子在Ⅰ区内做匀速圆周运动的半径为r,由牛顿第二定律得
①
根据几何关系得
②
联立①②式得
③
(2)离子在Ⅱ区内只受电场力,x方向做匀速直线运动,y方向做匀变速直线运动,设从进入电场到击中测试板中心C的时间为t,y方向的位移为,加速度大小为a,由牛顿第二定律得
④
由运动的合成与分解得
⑤
⑥
⑦
联立①②④⑤⑥⑦式得
⑧
(3)Ⅱ区内填充磁场后,离子在垂直y轴的方向做匀速圆周运动,如图所示。设左侧部分的圆心角为,圆周运动半径为,运动轨迹长度为,由几何关系得
⑨
⑩
离子在Ⅱ区内的运动时间不变,故有
⑪
C到的距离
⑫
联立⑨⑩⑪⑫式得
⑬
18.(16分)如图所示,三个质量均为m的小物块A、B、C,放置在水平地面上,A紧靠竖直墙壁,一劲度系数为k的轻弹簧将A、B连接,C紧靠B,开始时弹簧处于原长,A、B、C均静止。现给C施加一水平向左、大小为F的恒力,使B、C一起向左运动,当速度为零时,立即撤去恒力,一段时间后A离开墙壁,最终三物块都停止运动。已知A、B、C与地面间的滑动摩擦力大小均为f,最大静摩擦力等于滑动摩擦力,弹簧始终在弹性限度内。(弹簧的弹性势能可表示为:,k为弹簧的劲度系数,x为弹簧的形变量)
(1)求B、C向左移动的最大距离和B、C分离时B的动能;
(2)为保证A能离开墙壁,求恒力的最小值;
(3)若三物块都停止时B、C间的距离为,从B、C分离到B停止运动的整个过程,B克服弹簧弹力做的功为W,通过推导比较W与的大小;
(4)若,请在所给坐标系(见答题卡)中,画出C向右运动过程中加速度a随位移x变化的图像,并在坐标轴上标出开始运动和停止运动时的a、x值(用f、k、m表示),不要求推导过程。以撤去F时C的位置为坐标原点,水平向右为正方向。
正确答案
(1)从开始到B、C向左移动到最大距离的过程中,以B、C和弹簧为研究对象,由功能关系得
①
弹簧恢复原长时B、C分离,从弹簧最短到B、C分离,以B、C和弹簧为研究对象,由能量守恒得
②
联立①②式得
③
④
(2)当A刚要离开墙时,设弹簧的伸长量为x,以A为研究对象,由平衡条件得
⑤
若A刚要离开墙壁时B的速度恰好等于零,这种情况下恒力为最小值,从弹簧恢复原长到A刚要离开墙的过程中,以B和弹簧为研究对象,由能量守恒得
⑥
联立①②⑤⑥式得
⑦
根据题意舍去,得
⑧
(3)从B、C分离到B停止运动,设B的路程为,C的位移为,以B为研究对象,由动能定理得
⑨
以C为研究对象,由动能定理得
⑩
由B、C的运动关系得
⑪
联立⑨⑩⑪式得
⑫
(4)