6.某学校高一、高二、高三共有2400名学生,为了调查学生的课余学习情况,拟采用分层抽样的方法抽取一个容量为120的样本.已知高一有820名学生,高二有780名学生,则在该学校的高三应抽取( )名学生.
20.如图所示,某旅游景点有一座风景秀丽的山峰,山上有一条笔直的山路BC和一条索道AC,小王和小李打算不坐索道,而是花2个小时的时间进行徒步攀登。已知,
,
(千米),
(千米)。假设小王和小李徒步攀登的速度为每小时1200米,请问:两位登山爱好者能否在2个小时内徒步登上山峰。(即从B点出发到达C点)
22.定义:对于函数,若存在非零常数
,使函数
对于定义域内的任意实数
,都有
,则称函数
是广义周期函数,其中称
为函数
的广义周期,
称为周距
(1)证明函数是以2为广义周期的广义周期函数,并求出它的相应周距
的值;
(2)试求一个函数,使
(
为常数,
)为广义周期函数,并求出它的一个广义周期
和周距
;
(3)设函数是周期
的周期函数,当函数
在
上的值域为
时,求
在
上的最大值和最小值
21.已知椭圆的一个顶点和两个焦点构成的三角形的面积为4
(1)求椭圆的方程;
(2)已知直线与椭圆
交于
、
两点,试问,是否存在
轴上的点
,使得对任意的
,
为定值,若存在,求出
点的坐标,若不存在,说明理由
19.如图,△中,
,
,
,在三角形内挖去一个半圆(圆心
在边
上,半圆与
、
分别相切于点
、
,与
交于点
),将△
绕直线
旋转一周得到一个旋转体.
(1)求该几何体中间一个空心球的表面积的大小;
(2)求图中阴影部分绕直线旋转一周所得旋转体的体积。
23.一个三角形数表按如下方式构成(如图:其中项数):第一行是以4为首项,4为公差的等差数列,从第二行起,每一个数是其肩上两个数的和,例如:
;
为数表中第
行的第
个数。
(1)求第2行和第3行的通项公式和
;
(2)证明:数表中除最后2行外每一行的数都依次成等差数列,并求关于
(
)的表达式;
(3)若,
,试求一个等比数列
,使得
,且对于任意的
,均存在实数
,当
时,都有