数学 成都市2016年高三高三上学期期末试卷
精品
|
单选题 本大题共10小题,每小题5分,共50分。在每小题给出的4个选项中,有且只有一项是符合题目要求。
1
题型: 单选题
|
分值: 5分

4.设a,l是直线,α和β是平面,则下列说法正确的是(   )

A若α⊥β,l∥α,则l⊥β

B若α⊥β,l⊥a,则l∥β

Cl∥α,l∥β,则α∥β

Dl∥α,l⊥β,则α⊥β

正确答案

D

解析

本题属于立体几何中的基本问题,题目的难度是简单。

考查方向

本题主要考查了线面位置关系,在近几年的各省高考题出现的频率较高。

解题思路


易错点

本题易在判断线是否在面上发生错误。

知识点

命题的真假判断与应用直线与平面平行的判定与性质平面与平面平行的判定与性质直线与平面垂直的判定与性质平面与平面垂直的判定与性质
1
题型: 单选题
|
分值: 5分

6.要得到y=sin2x- sin2x-cos2x的图象,只需将y=2sin2x的图象(   )

A向左平移个单位

B向左平移个单位

C向右平移个单位

D向右平移个单位

正确答案

C

解析

本题属于三角函数中的基本问题,题目的难度是逐渐由易到难。注意化简时对φ的选取。

考查方向

本题主要考查了三角函数的图象与性质,在近几年的各省高考题出现的频率非常高,常与三角恒等变形公式,函数单调性、周期性、对称型、奇偶性等知识点交汇命题。

解题思路


易错点

本题易在公式化简上发生错误。

知识点

函数y=Asin(ωx+φ)的图象变换三角函数中的恒等变换应用
1
题型: 单选题
|
分值: 5分

9.化简:4sin40°-tan40°等于(   )

A1

B

C

D2

正确答案

B

解析

本题属于三角函数中的基本问题,题目的难度是逐渐由易到难。注意化简时对两角和差公式的选取.

考查方向

本题主要考查了三角函数的公式化简计算,在近几年的各省高考题出现的频率较高,常与三角恒等变形公式等知识点交汇命题。

解题思路


易错点

本题易在公式化简上发生错误。

知识点

三角函数的化简求值弦切互化
1
题型: 单选题
|
分值: 5分

10.设函数f(x)=,若关于x的方程[f(x)]3一a|f(x)|+2=0有两个不等实根,则实数a的取值范围是(   )

A(0,1)

B(1,3)

C(一1,3)

D(3,+∞)

正确答案

D

解析

本题属于函数中的零点问题,题目的难度较大。注意对函数f(x)的值域的分析.

考查方向

本题主要考查了函数的零点问题,在近几年的各省高考题出现的频率较高,常与基本初等函数图像、不等式含参问题等知识点交汇命题。

解题思路


易错点

本题易在含参的讨论上发生错误。

知识点

函数零点的判断和求解
1
题型: 单选题
|
分值: 5分

1.若双曲线的焦点在x轴上,则实数k的取值范围是(    )

A(一∞,1)

B(2,+∞)

C(1,2)

D(一∞,1)U(2,+∞)

正确答案

A

解析

本题属于双曲线中的基本问题,题目的难度是简单。

考查方向

主要考查了双曲线的标准方程,在近几年的各省高考题出现的频率较高。

解题思路


易错点

本题易在求解时把分母平方运算。

知识点

椭圆的几何性质双曲线的几何性质
1
题型: 单选题
|
分值: 5分

2.已知向量a=(2,x).b=(一4,2).若(a十b)∥(2a-b),则实数x的值为(   )

A-2

B-1

C1

D2

正确答案

B

解析

本题属于平面向量中的基本问题,题目的难度是简单。

考查方向

本题主要考查了平面向量的平行的坐标表示,在近几年的各省高考题出现的频率较高。

解题思路


易错点

本题易在应用平行的坐标表示公式时发生错误。

知识点

平行向量与共线向量平面向量的坐标运算
1
题型: 单选题
|
分值: 5分

3.按右边所示框图运行程序,输出的s等于(   )

A0

B1

C2

D3

正确答案

A

解析

本题属于程序框图中的基本问题,题目的难度是简单。

考查方向

本题主要考查了程序框图,在近几年的各省高考题出现的频率较高。

解题思路


易错点

本题易在s和i的顺序上发生错误。

知识点

程序框图
1
题型: 单选题
|
分值: 5分

5.如图所示,酒杯的杯体轴截面是抛物线x2=2py (p>0)的一部分,若将半径为r(r>0)的玻璃球放入杯中,可以触及酒杯底部(即抛物线的顶点),则r的最大值为(   )

A

B1

C2

D4

正确答案

B

解析

本题属于圆锥曲线中的基本问题,题目的难度是逐渐由易到难。

(1)直接按照步骤来求

(2)要注意对参数的讨论

(3)涉及恒成立问题,转化成求二次函数的最值,这种思路是一般解法,往往要利用对称轴.

考查方向

本题主要考查了抛物线与圆的位置关系,在近几年的各省高考题出现的频率较低。

解题思路


易错点

本题易在判断线是否在面上发生错误。

知识点

抛物线的定义及应用抛物线的标准方程和几何性质
1
题型: 单选题
|
分值: 5分

7.设集合A={(x,y)|y≥|x-l|},B={(x,y)|x-2y+2≥0),C={(x,y)|ax-y+a≥0},若(AB) C,则实数a的最小值为(   )

A-2

B一1

C1

D2

正确答案

C

解析

本题属于线性规划中的基本问题,题目的难度是逐渐由易到难。注意动直线经过定点。

考查方向

本题主要考查了集合的基本运算和线性规划问题,在近几年的各省高考题出现的频率较高,常与不等式、函数、线性规划等知识点交汇命题。

解题思路


易错点

本题易在解不等式时发生错误。

知识点

交、并、补集的混合运算
1
题型: 单选题
|
分值: 5分

8.从集合{1,2,3,4,5,6,7)中任取五个不同元素构成数列al,a2,a3,a4,a5,中a3是al和a5的等差中项,且a2<a4,则这样的数列共有(   )

A96个

B108个

C120个

D216个

正确答案

B

解析

本题属于计数原理中的基本问题,题目的难度是逐渐由易到难。注意等差数列的公差可以为负数.

考查方向

本题主要考查了等差数列和计数原理问题,在近几年的各省高考题出现的频率较低,常与等比数列、不等式等知识点交汇命题。

解题思路


易错点

本题易在罗列数列个数时发生错误。

知识点

等差数列的性质及应用
填空题 本大题共5小题,每小题5分,共25分。把答案填写在题中横线上。
1
题型:填空题
|
分值: 5分

11.设i是虚数单位,若(z-l) (1+i)=1-i,则复数z等于____.

正确答案

1-i

解析

本题属于复数的运算问题,题目的难度较小。注意共轭复数即可。

考查方向

本题主要考查了复数的运算。

易错点

本题必须注意共轭复数,忽视则会出现错误。

知识点

复数代数形式的混合运算
1
题型:填空题
|
分值: 5分

12.正四棱柱ABCD-A1B1C1D1中,底面边长为1,侧棱长为2,则异面直线AC1与B1C所成角的余弦值是             .

正确答案

解析

本题属于空间角的计算问题,题目的难度较小。注意利用向量法比推理法简单。

考查方向

本题主要考查了立体几何的空间角的问题。

易错点

本题必须注意正四棱柱的性质,忽视则会出现错误。

知识点

棱柱的结构特征异面直线及其所成的角
1
题型:填空题
|
分值: 5分

13.若(a+x)(1-x)4的展开式的奇次项系数和为48,则实数a之值为____.

正确答案

-5

解析

本题属于二项式定理的问题,题目的难度较小。注意首先将多项式展开。

考查方向

本题主要考查了二项式定理的问题。

易错点

本题必须注意二项式系数的性质,忽视则会出现错误。

知识点

求二项展开式的指定项或指定项的系数
1
题型:填空题
|
分值: 5分

15.设函数f (x)的定义域为I,若对x∈I,都有f(x)<x,则称f(x)为T-函数;若对x∈I,都有f[f(x)]<x,则称f(x)为一函数.给出下列命题:

①f (x) =ln(l+x)(x≠0)为-函数;

②f (x) =sinx (0<x<)为一函数; 

③f (x)为-函数是(x)为一函数的充分不必要条件; 

④f (x) =ax2-1既是一函数又是一函数的充 要条件是a<一。 其中真命题有   

(把你认为真命题的序号都填上)

正确答案

①②④

解析

本题属于函数图像的问题,题目的难度较大。注意严格按照题目的定义求解。

考查方向

本题主要考查了函数图像的问题。

易错点

本题必须注意严格按照题目的定义求解,忽视则会出现错误。

知识点

命题的真假判断与应用
1
题型:填空题
|
分值: 5分

14.己知平行四边形的周长为6,则其对角线长的平方和的最小值是          .

正确答案

9

解析

本题属于平面向量和基本不等式的问题,题目的难度较小。注意转化为平面向量求解。

考查方向

本题主要考查了平面向量和基本不等式的问题。

易错点

本题必须注意转化为平面向量的问题求解,忽视则会出现错误。

知识点

利用基本不等式求最值基本不等式的实际应用
简答题(综合题) 本大题共75分。简答应写出文字说明、证明过程或演算步骤。
1
题型:简答题
|
分值: 12分

16.多面体ABCDEF(如图甲)的俯视图如图乙,己知面ADE为正三角形

(1)求多面体ABCDEF的体积;

(2)求二面角A-BF-C的余弦值.

正确答案

(1)

(2)

解析

本题属于立体几何中的基本问题,题目的难度是逐渐由易到难.

(1)分别取AB、CD的中点M、N,连接EM、EN、MN,多面体体积转化为棱柱AED-MFN的体积V1与四棱锥F-MBCN的体积V2之和。由三视图可知,AD=2,AM=DN=1,面ADE为正三角形且垂直于底面ABCD,知F点到底面的距离为。所以V=V1+V2=+/3=.

(2)取MN的中点O,BC的中点P,以OM为x轴,OP为y轴,OF为z轴建立坐标系,易知A(1,-1,0),B(1,1,0),F(0,0, ),C(-1,1,0),则设面ABF的法向量,可得面ABF的一个法向量同理。设二面角A-BF-C的平面角为θ,

考查方向

本题考查了立体几何中的体积和二面角的问题.属于高考中的高频考点。

解题思路


易错点

1、第一问中的多面体的拆分。

2、第二问中二面角的求解时要建立适当的空间直角坐标系。

知识点

组合几何体的面积、体积问题简单空间图形的三视图二面角的平面角及求法
1
题型:简答题
|
分值: 12分

17.某班同学参加社会实践活动,对本市25~55岁年龄段的人群进行某项随机调查,得到各年龄段被调查人数的频率分布直方图如右(部分有缺损):

(1)补全频率分布直方图(需写出计算过程); 

(2)现从[40,55)岁年龄段样本中采用分层抽样方法抽取6人分成A、B两个小组(每组3人)参加户外体验活动,记A组中年龄在[40,45)岁的人数为,求随机变量的分布列和数学期望E

正确答案

(1)0.06;

(2)

解析

本题属于概率统计中的基本问题,题目的难度是逐渐由易到难

(1)因为第二组的频率为1-(0.04+0.04+0.03+0.02+0.01)×5=0.3所以高为0.3/5=0.06。频率直方图如下:

(2)因为[40,45)组、[45,50)组和[50,55)组的人数比为0.03:0.02:0.01=3:2:1,所以三组中应抽出的人数分别为3、2、1.=0,1,2,3.

,,.  

.

考查方向

本题考查了概率统计中的频率分布直方图和离散型随机变量的分布列和数学期望的问题.属于高考中的高频考点。

解题思路


易错点

1、第一问中的高为频率/组距。

2、第二问中随机变量的取值集对应的概率。

知识点

离散型随机变量及其分布列、均值与方差频率分布直方图
1
题型:简答题
|
分值: 12分

18.设数列{an}的前n项和为Sn,己知a1=l,nan+1=(n+2)Sn,n∈N*.求证:是等比数列;设Tn= S1+S2+--+Sn,求证:(n+l) Tn<nSn+1

正确答案

(1)

(2)略.

解析

本题属于数列中的基本问题,题目的难度是逐渐由易到难.

(1)由已知得。所以是以1为首项,2为公比的等比数列。

(2)由上知

        ……①

   ……②

①-②得:

即(n+l) Tn<nSn+1

考查方向

本题考查了数列的问题.属于高考中的高频考点。

易错点

错位相减法求和时相减的结果项数易错。

知识点

等比数列的判断与证明数列与不等式的综合
1
题型:简答题
|
分值: 12分

19.(1)求证:sinα·sinβ=[cos(α-β)一cos(α+β)];

(2)在锐角△ABC中,∠ A=60°,BC=2,求△ABC面积的取值范围.

正确答案

(1)略;

(2)

解析

本题属于三角函数中的基本问题,题目的难度是逐渐由易到难.

(1)由

两式相减得:

(2)由正弦定理可知, 

所以.

考查方向

本题考查了三角函数的积化和差的证明及解三角形的问题.属于高考中的高频考点。

解题思路


易错点

注意锐角三角形的条件,忽视则容易出错。

知识点

两角和与差的余弦函数余弦定理的应用
1
题型:简答题
|
分值: 13分

20.已知椭圆C的中心在坐标原点O,左焦点为F(-l,0),离心率为

(1)求椭圆C的标准方程;

(2)过点F的直线,与椭圆C交于A、B两点,设(其中1<入<3),求的取值范围。

正确答案

(1)

(2)

解析

本题属于圆锥曲线中的基本问题,题目的难度是逐渐由易到难,

(1)直接按照步骤来求

(2)要注意对参数的讨论.

(1)

(2)由(其中1<入<3)知,直线l不水平,

l:x=my-1,A(x1,y1),B(x2,y2)联立:

消x得:(2+m2)y2-2my-1=0,

①由(其中1<入<3)

得y1= -λy2……② 

令t=,则0<t<,

……③。

=x1x2+y1y2=(my1-1)(my2-1)+y1y2=(1+m2)y1y2-m(y1+y2)+1=

将③代入,得=

从而

考查方向

本题考查了椭圆的标准方程和直线与椭圆的位置关系、平面向量等知识点.

解题思路


易错点

1、第二问中的易丢对a的分类讨论。

知识点

椭圆的定义及标准方程椭圆的几何性质圆锥曲线中的范围、最值问题
1
题型:简答题
|
分值: 14分

21.己知函数f(x)=a(x-)-2lnx,其中a∈R.

(1)若f(x)有极值,求a的取值范围;

(2)讨论(x)的零点个数,并说明理由.(参考数值:ln2≈0. 6931)

正确答案

(1)0<a<1;

(2)当a≤0或a≥1时,有唯一零点;当0<a<1时,有三个零点.

解析

本题属于导数应用中的基本问题,题目的难度是逐渐由易到难,

(1)直接按照步骤来求;

(2)要注意对参数的讨论.

(1)

因为f(x)定义域为(0,+∞),

所以ax2-2x+a=0有正根且不为等根。

显然a≠0,由x1x2=1>0.得Δ>0且x1+x2>0,所以  0<a<1 。

(2)由上知,

因为x∈(0,+∞),①若a≤0,则<0恒成立,所以f(x)在(0,+∞)单调递减,因为f(1)=0,所以f(x)的零点唯一;

②若a≥1,则≥0恒成立,所以f(x)在(0,+∞)单调递增,因为f(1)=0,所以f(x)的零点唯一;

③若0<a<1,记x1,x2分别为ax2-2x+a=0的两根,且x1<1<x2,且f(x)在(0,x1)单调递增,在(x1,x2)单调递增,(x2,+∞)单调递增。

因为f(1)=0,所以f(x1)>0,f(x2)<0.当x∈(0,x1)时,取

显然,>0,

所以h(a)在(0,1)单调递增,所以

f(x)在有一个零点;因为

则f(x)在有一个零点;

综上可知:当a≤0或a≥1时,有唯一零点;当0<a<1时,有三个零点.

考查方向

本题考查了利用导数求含参数的函数极值,分类讨论,讨论点大体可以分成以下几类:

1、根据判别式讨论;

2、根据二次函数的根的大小;

3、定义域由限制时,根据定义域的隐含条件;

4、求导形式复杂时取部分特别常常只需要转化为一个二次函数来讨论;

5、多次求导求解等.

解题思路

易错点

第二问中的易丢对a的分类讨论。

知识点

函数零点的判断和求解导数的运算

点击 “立即下载”

即可下载本试卷,含解析哦

知道啦