18.(本小题满分16分)
如图,在平面直角坐标系中,椭圆C过点
,焦点
,圆O的直径为
.
(1)求椭圆C及圆O的方程;
(2)设直线l与圆O相切于第一象限内的点P.
①若直线l与椭圆C有且只有一个公共点,求点P的坐标;
②直线l与椭圆C交于两点.若
的面积为
,求直线l的方程.
19.(本小题满分16分)
记分别为函数
的导函数.若存在
,满足
且
,则称
为函数
与
的一个“S点”
(1)证明:函数与
不存在“S点”;
(2)若函数与
存在“S点”,求实数a的值;
(3)已知函数,
.对任意
,判断是否存在
,使函数
与
在区间
内存在“S点”,并说明理由.
17.(本小题满分14分)
某农场有一块农田,如图所示,它的边界由圆O的一段圆弧
(P为此圆弧的中点)和线段MN构成.已知圆O的半径为40米,点P到MN的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD,大棚Ⅱ内的地块形状为
,要求
均在线段
上,
均在圆弧上.设OC与MN所成的角为
.
(1)用分别表示矩形
和
的面积,并确定
的取值范围;
(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为.求当
为何值时,能使甲、乙两种蔬菜的年总产值最大.
20.(本小题满分16分)
设是首项为
,公差为d的等差数列,
是首项为
,公比为q的等比数列.
(1)设,若
对
均成立,求d的取值范围;
(2)若,证明:存在
,使得
对
均成立,并求
的取值范围(用
表示).
22.(本小题满分10分)
如图,在正三棱柱ABC-A1B1C1中,AB=AA1=2,点P,Q分别为A1B1,BC的中点.
(1)求异面直线BP与AC1所成角的余弦值;
(2)求直线CC1与平面AQC1所成角的正弦值.
21.【选做题】本题包括 A、B、C、D 四小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.
A.[选修4—1:几何证明选讲](本小题满分10分)
如图,圆O的半径为2,AB为圆O的直径,P为AB延长线上一点,过P作圆O的切线,切点为C.若,求 BC 的长.
B.[选修4—2:矩阵与变换](本小题满分10分)
已知矩阵.
(1)求的逆矩阵
;
(2)若点P在矩阵对应的变换作用下得到点
,求点P的坐标.
C.[选修4—4:坐标系与参数方程](本小题满分10分)
在极坐标系中,直线l的方程为,曲线C的方程为
,求直线l被曲线C截得的弦长.
D.[选修4—5:不等式选讲](本小题满分10分)
若x,y,z为实数,且x+2y+2z=6,求的最小值.
23.(本小题满分10分)
设,对1,2,···,n的一个排列
,如果当s<t时,有
,则称
是排列
的一个逆序,排列
的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记
为1,2,···,n的所有排列中逆序数为k的全部排列的个数.
(1)求的值;
(2)求的表达式(用n表示).