2.若复数满足,其中i是虚数单位,则的实部为 ▲ .
正确答案
2
4.一个算法的伪代码如图所示,执行此算法,最后输出的S的值为 ▲ .
正确答案
8
3.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为 ▲ .
正确答案
90
8.在平面直角坐标系中,若双曲线的右焦点到一条渐近线的距离为,则其离心率的值是 ▲ .
正确答案
2
6.某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为 ▲ .
正确答案
9.函数满足,且在区间上, 则的值为 ▲ .
正确答案
1.已知集合,,那么 ▲ .
正确答案
{1,8}
5.函数的定义域为 ▲ .
正确答案
[2,+∞)
10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 ▲ .
正确答案
7.已知函数的图象关于直线对称,则的值是 ▲ .
正确答案
11.若函数在内有且只有一个零点,则在上的最大值与最小值的和为 ▲ .
正确答案
–3
14.已知集合,.将的所有元素从小到大依次排列构成一个数列.记为数列的前n项和,则使得成立的n的最小值为 ▲ .
正确答案
27
13.在中,角所对的边分别为,,的平分线交于点D,且,则的最小值为 ▲ .
正确答案
9
12.在平面直角坐标系中,A为直线上在第一象限内的点,,以AB为直径的圆C与直线l交于另一点D.若,则点A的横坐标为 ▲ .
正确答案
3
18.(本小题满分16分)
如图,在平面直角坐标系中,椭圆C过点,焦点,圆O的直径为.
(1)求椭圆C及圆O的方程;
(2)设直线l与圆O相切于第一象限内的点P.
①若直线l与椭圆C有且只有一个公共点,求点P的坐标;
②直线l与椭圆C交于两点.若的面积为,求直线l的方程.
正确答案
(1)因为椭圆C的焦点为,
可设椭圆C的方程为.又点在椭圆C上,
所以,解得
因此,椭圆C的方程为.
因为圆O的直径为,所以其方程为.
(2)①设直线l与圆O相切于,则,
所以直线l的方程为,即.
由,消去y,得
.(*)
因为直线l与椭圆C有且只有一个公共点,
所以.
因为,所以.
因此,点P的坐标为.
②因为三角形OAB的面积为,所以,从而.
设,
由(*)得,
所以
.
因为,
所以,即,
解得舍去),则,因此P的坐标为.
综上,直线l的方程为.
19.(本小题满分16分)
记分别为函数的导函数.若存在,满足且,则称为函数与的一个“S点”
(1)证明:函数与不存在“S点”;
(2)若函数与存在“S点”,求实数a的值;
(3)已知函数,.对任意,判断是否存在,使函数与在区间内存在“S点”,并说明理由.
正确答案
(1)函数f(x)=x,g(x)=x2+2x-2,则f′(x)=1,g′(x)=2x+2.
由f(x)=g(x)且f′(x)= g′(x),得
,此方程组无解,
因此,f(x)与g(x)不存在“S”点.
(2)函数,,
则.
设x0为f(x)与g(x)的“S”点,由f(x0)=g(x0)且f′(x0)=g′(x0),得
,即,(*)
得,即,则.
当时,满足方程组(*),即为f(x)与g(x)的“S”点.
因此,a的值为.
(3)对任意a>0,设.
因为,且h(x)的图象是不间断的,
所以存在∈(0,1),使得,令,则b>0.
函数,
则.
由f(x)=g(x)且f′(x)=g′(x),得
,即(**)
此时,满足方程组(**),即是函数f(x)与g(x)在区间(0,1)内的一个“S点”.
因此,对任意a>0,存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”.
15.(本小题满分14分)
在平行六面体中,.
求证:(1);
(2).
正确答案
(1)在平行六面体ABCD-A1B1C1D1中,AB∥A1B1.
因为AB平面A1B1C,A1B1平面A1B1C,
所以AB∥平面A1B1C.
(2)在平行六面体ABCD-A1B1C1D1中,四边形ABB1A1为平行四边形.
又因为AA1=AB,所以四边形ABB1A1为菱形,
因此AB1⊥A1B.
又因为AB1⊥B1C1,BC∥B1C1,
所以AB1⊥BC.
又因为A1B∩BC=B,A1B平面A1BC,BC平面A1BC,
所以AB1⊥平面A1BC.
因为AB1平面ABB1A1,
所以平面ABB1A1⊥平面A1BC.
16.(本小题满分14分)
已知为锐角,,.
(1)求的值;
(2)求的值.
正确答案
(1)因为,,所以.
因为,所以,
因此,.
(2)因为为锐角,所以.
又因为,所以,
因此.
因为,所以,
因此,.
17.(本小题满分14分)
某农场有一块农田,如图所示,它的边界由圆O的一段圆弧(P为此圆弧的中点)和线段MN构成.已知圆O的半径为40米,点P到MN的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD,大棚Ⅱ内的地块形状为,要求均在线段上,均在圆弧上.设OC与MN所成的角为.
(1)用分别表示矩形和的面积,并确定的取值范围;
(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为.求当为何值时,能使甲、乙两种蔬菜的年总产值最大.
正确答案
(1)连结PO并延长交MN于H,则PH⊥MN,所以OH=10.
过O作OE⊥BC于E,则OE∥MN,所以∠COE=θ,
故OE=40cosθ,EC=40sinθ,
则矩形ABCD的面积为2×40cosθ(40sinθ+10)=800(4sinθcosθ+cosθ),
△CDP的面积为×2×40cosθ(40–40sinθ)=1600(cosθ–sinθcosθ).
过N作GN⊥MN,分别交圆弧和OE的延长线于G和K,则GK=KN=10.
令∠GOK=θ0,则sinθ0=,θ0∈(0,).
当θ∈[θ0,)时,才能作出满足条件的矩形ABCD,
所以sinθ的取值范围是[,1).
答:矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为
1600(cosθ–sinθcosθ),sinθ的取值范围是[,1).
(2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,
设甲的单位面积的年产值为4k,乙的单位面积的年产值为3k(k>0),
则年总产值为4k×800(4sinθcosθ+cosθ)+3k×1600(cosθ–sinθcosθ)
=8000k(sinθcosθ+cosθ),θ∈[θ0,).
设f(θ)= sinθcosθ+cosθ,θ∈[θ0,),
则.
令,得θ=,
当θ∈(θ0,)时,,所以f(θ)为增函数;
当θ∈(,)时,,所以f(θ)为减函数,
因此,当θ=时,f(θ)取到最大值.
答:当θ=时,能使甲、乙两种蔬菜的年总产值最大.
20.(本小题满分16分)
设是首项为,公差为d的等差数列,是首项为,公比为q的等比数列.
(1)设,若对均成立,求d的取值范围;
(2)若,证明:存在,使得对均成立,并求的取值范围(用表示).
正确答案
(1)由条件知:.
因为对n=1,2,3,4均成立,
即对n=1,2,3,4均成立,
即11,1d3,32d5,73d9,得.
因此,d的取值范围为.
(2)由条件知:.
若存在d,使得(n=2,3,···,m+1)成立,
即,
即当时,d满足.
因为,则,
从而,,对均成立.
因此,取d=0时,对均成立.
下面讨论数列的最大值和数列的最小值().
①当时,,
当时,有,从而.
因此,当时,数列单调递增,
故数列的最大值为.
②设,当x>0时,,
所以单调递减,从而<f(0)=1.
当时,,
因此,当时,数列单调递减,
故数列的最小值为.
因此,d的取值范围为.
22.(本小题满分10分)
如图,在正三棱柱ABC-A1B1C1中,AB=AA1=2,点P,Q分别为A1B1,BC的中点.
(1)求异面直线BP与AC1所成角的余弦值;
(2)求直线CC1与平面AQC1所成角的正弦值.
正确答案
如图,在正三棱柱ABC−A1B1C1中,设AC,A1C1的中点分别为O,O1,则OB⊥OC,OO1⊥OC,OO1⊥OB,以为基底,建立空间直角坐标系O−xyz.
因为AB=AA1=2,
所以.
(1)因为P为A1B1的中点,所以,
从而,
故.
因此,异面直线BP与AC1所成角的余弦值为.
(2)因为Q为BC的中点,所以,
因此,.
设n=(x,y,z)为平面AQC1的一个法向量,
则即
不妨取,
设直线CC1与平面AQC1所成角为,
则,
所以直线CC1与平面AQC1所成角的正弦值为.
21.【选做题】本题包括 A、B、C、D 四小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.
A.[选修4—1:几何证明选讲](本小题满分10分)
如图,圆O的半径为2,AB为圆O的直径,P为AB延长线上一点,过P作圆O的切线,切点为C.若,求 BC 的长.
B.[选修4—2:矩阵与变换](本小题满分10分)
已知矩阵.
(1)求的逆矩阵;
(2)若点P在矩阵对应的变换作用下得到点,求点P的坐标.
C.[选修4—4:坐标系与参数方程](本小题满分10分)
在极坐标系中,直线l的方程为,曲线C的方程为,求直线l被曲线C截得的弦长.
D.[选修4—5:不等式选讲](本小题满分10分)
若x,y,z为实数,且x+2y+2z=6,求的最小值.
正确答案
A.[选修4—1:几何证明选讲]
本小题主要考查圆与三角形等基础知识,考查推理论证能力.满分10分.
连结OC.因为PC与圆O相切,所以OC⊥PC.
又因为PC=,OC=2,
所以OP==4.
又因为OB=2,从而B为Rt△OCP斜边的中点,所以BC=2.
B.[选修4—2:矩阵与变换]
本小题主要考查矩阵的运算、线性变换等基础知识,考查运算求解能力.满分10分.
(1)因为,,所以A可逆,
从而.
(2)设P(x,y),则,所以,
因此,点P的坐标为(3,–1).
C.[选修4—4:坐标系与参数方程]
本小题主要考查曲线的极坐标方程等基础知识,考查运算求解能力.满分10分.
因为曲线C的极坐标方程为,
所以曲线C的圆心为(2,0),直径为4的圆.
因为直线l的极坐标方程为,
则直线l过A(4,0),倾斜角为,
所以A为直线l与圆C的一个交点.
设另一个交点为B,则∠OAB=.
连结OB,因为OA为直径,从而∠OBA=,
所以.
因此,直线l被曲线C截得的弦长为.
D.[选修4—5:不等式选讲]
本小题主要考查柯西不等式等基础知识,考查推理论证能力.满分10分.
由柯西不等式,得.
因为,所以,
当且仅当时,不等式取等号,此时,
所以的最小值为4.
23.(本小题满分10分)
设,对1,2,···,n的一个排列,如果当s<t时,有,则称是排列的一个逆序,排列的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记为1,2,···,n的所有排列中逆序数为k的全部排列的个数.
(1)求的值;
(2)求的表达式(用n表示).
正确答案
(1)记为排列abc的逆序数,对1,2,3的所有排列,有
,
所以.
对1,2,3,4的排列,利用已有的1,2,3的排列,将数字4添加进去,4在新排列中的位置只能是最后三个位置.
因此,.
(2)对一般的n(n≥4)的情形,逆序数为0的排列只有一个:12…n,所以.
逆序数为1的排列只能是将排列12…n中的任意相邻两个数字调换位置得到的排列,所以.
为计算,当1,2,…,n的排列及其逆序数确定后,将n+1添加进原排列,n+1在新排列中的位置只能是最后三个位置.
因此,.
当n≥5时,
,
因此,n≥5时,