单选题
本大题共12小题,每小题5分,共60分。在每小题给出的4个选项中,有且只有一项是符合题目要求。
简答题(综合题)
本大题共70分。简答应写出文字说明、证明过程或演算步骤。
1
20.如图,已知椭圆:
的一个焦点是
,两个焦点与短轴的一个端点构成等边三角形.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点且不与坐标轴垂直的直线
交椭圆
于
、
两点,设点
关于
轴的对称点为
.
(ⅰ)求证:直线过
轴上一定点,并求出此定点坐标;
(ⅱ)求△面积的取值范围.
分值: 12分
查看题目解析 >
1
17.已知分别在射线
(不含端点
)上运动,
,在
中,角
、
、
所对的边分别是
、
、
.
(Ⅰ)若、
、
依次成等差数列,且公差为2.求
的值;
(Ⅱ)若,
,试用
表示
的周长,并求周长的最大值.
分值: 12分
查看题目解析 >
1
请考生在第(22)、(23)、(24)三题中任选一题作答,如果多做,则按所做的第一题记分
22.如图,⊙O1与⊙O2相交于A、B两点,过点A作⊙O1的切线交⊙O2于点C,过点B作两圆的割线,分别交⊙O1、⊙O2于点D、E,DE与AC相交于点P.
(1)求证:AD//EC;
(2)若AD是⊙O2的切线,且PA=6,PC =2,BD =9,求AD的长。
23.在平面直角坐标系中,直线
的参数方程为:
(
为参数).以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(Ⅰ)求曲线的平面直角坐标方程;
(Ⅱ)设直线与曲线
交于点
,若点
的坐标为
,求
的值.
24.已知不等式的解集为
.
(Ⅰ )求的值;
(Ⅱ )若,求
的取值范围.
分值: 10分
查看题目解析 >