8.正方形的边长为
,点
在边
上,点
在边
上,
。动点
从
出发沿直线向
运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角,当点
第一次碰到
时,
与正方形的边碰撞的次数为( )
7.观察(x2)′=2x,(x4)′=4x3,(cosx)′=-sinx,由归纳推理可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)=( )
11.设△ABC的三边长分别为a、b、c,△ABC的面积为S,内切圆半径为r,则;类比这个结论可知:四面体S-ABC的四个面的面积分别为S1、S2、S3、S4,内切球的半径为R,四面体P-ABC的体积为V,则R=( )
13.已知是定义在
上的不恒为零的函数,且对任意
满足下列关系式:
,
,
,
考察下列结论:
①;
②为偶函数;
③数列为等比数列;
④数列为等差数列,其中正确的结论是:____________。
15.设等差数列{an}的前n项和为Sn,则S4,S8,S4,S12,S8,S16,S12成等差数列.类比以上结论有:设等比数列{bn}的前n项积为Tn,则T4,_____________,____________,成等比数列.
16.平面几何中,△ABC的内角平分线CE分AB所成线段的比,把这个结论类比到空间:在三棱锥A-BCD中(如图所示),平面DEC平分二面角A-CD-B且与AB相交于E,则得到的类比的结论是____________.
19.祖暅原理也就是“等积原理”,它是由我国南北朝杰出的数学家、祖冲之的儿子祖暅首先提出来的. 祖暅原理的内容是:夹在两个平行平面间的两个几何体,被平行于这两个平行平面的平面所截,如果截得两个截面的面积总相等,那么这两个几何体的体积相等. 可以用诗句“两个胖子一般高,平行地面刀刀切,刀刀切出等面积,两人必然同样胖”形象表示其内涵. 利用祖暅原理可以推导几何体的体积公式,关键是要构造一个参照体.
试用祖暅原理推导球的体积公式.