• 文科数学 太原市2012年高三试卷
单选题 本大题共12小题,每小题5分,共60分。在每小题给出的4个选项中,有且只有一项是符合题目要求。
1

1.已知集合,则 (  )

A

B

C

D

分值: 5分 查看题目解析 >
1

2.设复数,则的共轭复数为(  )

A

B

C

D

分值: 5分 查看题目解析 >
1

3.若定义在上的函数满足,则对于任意的,都有的(  )

A充分不必要条件

B必要不充分条件

C充分必要条件

D既不充分也不必要条件

分值: 5分 查看题目解析 >
1

4.已知平面内一点满足,则 (  )

A

B

C

D

分值: 5分 查看题目解析 >
1

5.若是空间三条不同的直线,是空间两个不同的平面,则下列命题中,逆命题不正确的是(  )

A时,若,则

B时,若,则

C内的射影时,若,则

D时,若,则

分值: 5分 查看题目解析 >
1

6.若, 则=(  )

A

B

C

D

分值: 5分 查看题目解析 >
1

7.双曲线的渐近线与抛物线相切,则该双曲线的离心率等于(  )

A

B

C

D

分值: 5分 查看题目解析 >
1

8.在中,角所对的边分别为.若,则的值是(  )

A

B

C

D

分值: 5分 查看题目解析 >
1

9.一个棱锥的三视图如图,则该棱锥的全面积是(  )

A

B

C

D

分值: 5分 查看题目解析 >
1

10.设直线与函数的图像分别交于点,则当达到最小时的值为(    )

A1

B

C

D

分值: 5分 查看题目解析 >
1

11.设,在约束条件下,目标函数的最大值小于2,则的取值范围为(  )

A

B

C

D

分值: 5分 查看题目解析 >
1

12.数列满足及递推关系,那么此数列的项数最多有(  )

A50

B51

C49

D48

分值: 5分 查看题目解析 >
填空题 本大题共4小题,每小题5分,共20分。把答案填写在题中横线上。
1

13.已知=(      )

分值: 5分 查看题目解析 >
1

14.函数的零点个数为(         )

分值: 5分 查看题目解析 >
1

15.为正实数,且,则的最小值为(          )

分值: 5分 查看题目解析 >
1

16.已知直线的交点在直线上,则(          ).

分值: 5分 查看题目解析 >
简答题(综合题) 本大题共70分。简答应写出文字说明、证明过程或演算步骤。
1

17.已知数列满足

(Ⅰ)求数列的通项;

(Ⅱ)若求数列的前和。

分值: 12分 查看题目解析 >
1

18.有关部门要了解甲型H1N1流感预防知识在学校的普及情况,命制了一份道题的问卷到各学校做问卷调查.某中学两个班各被随机抽取名学生接受问卷调查,名学生得分为:班5名学生得分为:

(Ⅰ)请你估计两个班中哪个班的问卷得分要稳定一些;

(Ⅱ)如果把名学生的得分看成一个总体,并用简单随机抽样方法从中抽取样本容量为的样本,求样本平均数与总体平均数之差的绝对值不小于的概率.

分值: 12分 查看题目解析 >
1

19.已知在四棱锥中,底面是边长为4的正方形,是正三角形,平面⊥平面分别是的中点.

(I)求平面平面

(II)若是线段上一点,求三棱锥的体积.

分值: 12分 查看题目解析 >
1

20.已知离心率为的椭圆,左、右焦点分别为分别是直线上的两上动点,且的最小值为

(Ⅰ)求椭圆方程;

(Ⅱ)过定点的直线交椭圆于两点,关于轴的对称点(不共线),问:直线是否会经过轴上一定点,并求过椭圆焦点时的值。

分值: 12分 查看题目解析 >
1

21.已知函数

(1)当时,如果函数仅有一个零点,求实数的取值范围;

(2)当时,试比较的大小;

(3)求证:).

分值: 12分 查看题目解析 >
1

请考生在22、23、24三题中任选一题作答。

22.选修4-1:几何证明选讲

如图,直线经过⊙上的点,并且交直线,连接

(I)求证:直线是⊙的切线;

(II)若的半径为,求的长.

23.选修4-4:坐标系与参数方程

已知

(I)当时,求的交点坐标;

(II)过坐标原点的垂线,垂足为的中点.当变化时,求点轨迹的参数方程,并指出它是什么曲线.

24.选修4-5:不等式选讲

已知函数

(I)当时,求函数的定义域;

(II)若关于的不等式的解集是,求实数的取值范围

分值: 10分 查看题目解析 >
  • 上一题
  • 1/22
  • 下一题

点击 “立即下载”

即可下载本试卷,含解析哦

知道啦