10.某班级有3名学生被复旦大学自主招生录取后,大学提供了3个专业由这3名学生选择,每名学生只能选择一个专业,假设每名学生选择每个专业都是等可能的,则这3个专业恰有一个专业没有学生选择的概率是_______.
18.下图揭示了一个由区间到实数集
上的对应过程:区间
内的任意实数
与数轴上的线段
(不包括端点)上的点
一一对应(图一),将线段
围成一个圆,使两端
恰好重合(图二),再将这个圆放在平面直角坐标系中,使其圆心在
轴上,点
的坐标为
(图三).图三中直线
与
轴交于点
,由此得到一个函数
,则下列命题中正确的序号是( )
;
是偶函数;
在其定义域上是增函数;
的图像关于点
对称
20.某加油站拟造如图所示的铁皮储油罐(不计厚度,长度单位:米),其中储油罐的中间为圆柱形,左右两端均为半球形,(
为圆柱的高,
为球的半径,
).假设该储油罐的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为
千元,半球形部分每平方米建造费用为3千元.设该储油罐的建造费用为
千元.
(1)写出关于
的函数表达式,并求该函数的定义域;
(2)求该储油罐的建造费用最小时的的值.
23.如果数列同时满足:(1)各项均不为
,(2)存在常数k, 对任意
都成立,则称这样的数列
为“类等比数列” .由此等比数列必定是“类等比数列” .问:如果数列
同时满足:(1)各项均为正数,(2)存在常数k, 对任意
都成立,那么,这样的数列
我们称之为“类等比数列” .由此等比数列必定是“类等比数列” .问:
(1)若数列为“类等比数列”,且k=(a2-a1)2,求证:a1、a2、a3成等差数列;
(2)若数列为“类等比数列”,且k=
, a2、a4、a5成等差数列,求的值;
(3)若数列为“类等比数列”,且a1=a,a2=b(a、b为常数),是否存在常数λ,使得
对任意
都成立?若存在,求出λ;若不存在,说明理由.
- 真题试卷
- 模拟试卷
- 预测试卷