单选题
本大题共12小题,每小题5分,共60分。在每小题给出的4个选项中,有且只有一项是符合题目要求。
简答题(综合题)
本大题共70分。简答应写出文字说明、证明过程或演算步骤。
1
18.某学校高三年级有学生500人,其中男生300人,女生200人,为了研究学生的数学成绩是否与性别有关,现采用分层抽样的方法,从中抽取了100名学生,先统计了他们期中考试的数学分数,然后按性别分为男、女两组,再将两组学生的分数分成5组:分别加以统计,得到如图所示的频率分布直方图.
(Ⅰ)从样本中分数小于110分的学生中随机抽取2人,求两人恰好为一男一女的概率;
(Ⅱ)若规定分数不小于130分的学生为“数学尖子生”,得到数据如下表:请你根据已知条件完成下列2×2列联表:
并判断是否有90%的把握认为“数学尖子生与性别有关”?
参考数据:
(参考公式:
,其中
)
分值: 12分
查看题目解析 >
1
20.已知直线,半径为
的圆
与
相切,圆心
在
轴上且在直线
的上方.
(Ⅰ)求圆的标准方程;
(Ⅱ)过点的直线与圆
交于
两点(
在
轴上方),问在
轴正半轴上是否存在点
,使得
轴平分
?若存在,请求出点
的坐标;若不存在,请说明理由.
分值: 12分
查看题目解析 >
- 真题试卷
- 模拟试卷
- 预测试卷