单选题
本大题共12小题,每小题5分,共60分。在每小题给出的4个选项中,有且只有一项是符合题目要求。
简答题(综合题)
本大题共70分。简答应写出文字说明、证明过程或演算步骤。
1
18.某校对高一年级学生寒假参加社区服务的次数进行了统计,随机抽取了M名学生作为样本,得到这M名学生参加社区服务的次数,根据此数据作出了频率分布统计表和频率分布直方图如下:
(Ⅰ)求表中n, p的值和频率分布直方图中的值,并根据频率分布直方图估计该校高一学生寒假参加社区服务次数的中位数;
(Ⅱ)如果用分层抽样的方法从样本服务次数在[10,15)和[25,30)的人中共抽取6人,再从这6人中选2人,求2人服务次数都在[10,15)的概率.
分值: 12分
查看题目解析 >
1
20.已知椭圆的中心在坐标原点,且抛物线
的焦点是椭圆
的一个焦点,以椭圆
的长轴的两个端点及短轴的一个端点为顶点的三角形的面积为6.
(Ⅰ)求椭圆的方程;
(Ⅱ)若斜率为的直线
与椭圆
交于不同的两点
、
又点
,求
面积最大时对应的直线
的方程.
分值: 12分
查看题目解析 >
- 真题试卷
- 模拟试卷
- 预测试卷