7. 某调查机构对本市小学生课业负担情况进行了调查,设平均每人每天做作业的时间为分钟.有1000名小学生参加了此项调查,调查所得数据用程序框图处理(如图),若输出的结果是680,则平均每天做作业的时间在0~60分钟内的学生的频率是( )
11. 从某社区150户高收入家庭,360户中等收入家庭,90户低收入家庭中,用分层抽样法选出100户调查社会购买力的某项指标,则三种家庭应分别抽取的户数依次为__________。
17. 乳制品按行业质量标准分成五个等级,等级系数X依次为1,2,3,4,5。现从一批该乳制品中随机抽取20件,对其等级系数进行统计分析,得到频率分布表如下:
(1)若所抽取的20件乳制品中,等级系数为4的恰有3件,等级系数为5的恰有2件,求a,b,c的值;
(2)在(1)的条件下,将等级系数为4的乳制品记为,等级系数为5的乳制品记为
,现从这5件乳制品
中任取两件(假定每件乳制品被取出的可能性相同),写出所有可能的结果,并求这两件乳制品的等级系数恰好相同的概率。
18.如图所示,圆柱的高为2,底面半径为,AE、DF是圆柱的两条母线,过
作圆柱的
截面交下底面于
.
(1)求证:;
(2)若四边形ABCD是正方形,求证;
(3)在(2)的条件下,求四棱锥的体积.
20.如图,已知椭圆的离心率为
,以该椭圆上的点和椭圆的左、右焦点
为顶点的三角形的周长为
.一等轴双曲线的顶点是该椭圆的焦点,设
为该双曲线上异于顶点的任一点,直线
和
与椭圆的交点分别为
和
.
(Ⅰ)求椭圆和双曲线的标准方程;
(Ⅱ)设直线PF1、PF2的斜率分别为k1、k2,证明k1·k2=1;
(III)是否存在常数,使得
恒成立?若存在,求
的值;若不存在,请说明理由.
21.已知定义在实数集上的函数 N
,其导函数记为
,且满足
,其中
、
、
为常数,
.设函数
R且
.
(Ⅰ)求实数的值;
(Ⅱ)若函数无极值点,其导函数
有零点,求m的值;
(Ⅲ)求函数在
的图象上任一点处的切线斜率k的最大值.
- 真题试卷
- 模拟试卷
- 预测试卷