15.(本小题满分13分)
已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.
(Ⅰ)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?
(Ⅱ)设抽出的7名同学分别用A,B,C,D,E,F,G表示,现从中随机抽取2名同学承担敬老院的卫生工作.
(i)试用所给字母列举出所有可能的抽取结果;
(ii)设M为事件“抽取的2名同学来自同一年级”,求事件M发生的概率.
17.(本小题满分13分)
如图,在四面体ABCD中,△ABC是等边三角形,平面ABC⊥平面ABD,点M为棱AB的中点,AB=2,AD=,∠BAD=90°.
(Ⅰ)求证:AD⊥BC;
(Ⅱ)求异面直线BC与MD所成角的余弦值;
(Ⅲ)求直线CD与平面ABD所成角的正弦值.
18.(本小题满分13分)
设{an}是等差数列,其前n项和为Sn(n∈N*);{bn}是等比数列,公比大于0,其前n项和为Tn(n∈N*).已知b1=1,b3=b2+2,b4=a3+a5,b5=a4+2a6.
(Ⅰ)求Sn和Tn;
(Ⅱ)若Sn+(T1+T2+…+Tn)=an+4bn,求正整数n的值.
19.(本小题满分14分)
设椭圆 的右顶点为A,上顶点为B.已知椭圆的离心率为
,
.
(I)求椭圆的方程;
(II)设直线与椭圆交于
两点,
与直线
交于点M,且点P,M均在第四象限.若
的面积是
面积的2倍,求k的值.
20.(本小题满分14分)
设函数,其中
,且
是公差为
的等差数列.
(I)若 求曲线
在点
处的切线方程;
(II)若,求
的极值;
(III)若曲线 与直线
有三个互异的公共点,求d的取值范围.
16.(本小题满分13分)
在△ABC中,内角A,B,C所对的边分别为a,b,c.已知bsinA=acos(B–).
(Ⅰ)求教B的大小;
(Ⅱ)设a=2,c=3,求b和sin(2A–B)的值.
- 真题试卷
- 模拟试卷
- 预测试卷