单选题
本大题共12小题,每小题5分,共60分。在每小题给出的4个选项中,有且只有一项是符合题目要求。
1
公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”。如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的值为( )(已知:
)
分值: 5分
查看题目解析 >
简答题(综合题)
本大题共80分。简答应写出文字说明、证明过程或演算步骤。
1
近年来,我国电子商务蓬勃发展,有关部门推出了针对网购平台的商品和服务的评价系统,从该系统中随机选出100名交易者,并对其交易评价进行了统计,网购者对商品的满意率为0.6,对服务的满意率为0.75,其中对商品和服务都满意的有40人.
(1)根据已知条件完成下面的列联表,并回答能否有
的把握认为“网购者对服务满意与对商品满意之间有关”?
(2)若对商品和服务都不满意者的集合为.已知
中有2名男性,现从
中任取2人调查其意见.求取到的2人恰好是一男一女的概率.
附:(其中
为样本容量)
分值: 12分
查看题目解析 >
1
请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.
选修4-4:坐标系与参数方程
在平面直角坐标系中,曲线
的参数方程为
以
为极点,
轴的非负半轴为极轴建立极坐标系,直线
的极坐标方程为
.
(1)写出曲线的普通方程及直线
的直角坐标方程;
(2)过点且平行于直线
的直线与曲线
交于
两点,若
,证明点
在一个椭圆上.
分值: 10分
查看题目解析 >
- 真题试卷
- 模拟试卷
- 预测试卷