- 真题试卷
- 模拟试卷
- 预测试卷
3.下列函数中,在区间(0,+)上单调递增的是
正确答案
2.已知复数z=2+i,则
正确答案
1.已知集合A={x|–1<x<2},B={x|x>1},则A∪B=
正确答案
4.执行如图所示的程序框图,输出的s值为
正确答案
5.已知双曲线(a>0)的离心率是,则a=
正确答案
6.设函数f(x)=cosx+bsinx(b为常数),则“b=0”是“f(x)为偶函数”的
正确答案
7.在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足,其中星等为的星的亮度为(k=1,2).已知太阳的星等是–26.7,天狼星的星等是–1.45,则太阳与天狼星的亮度的比值为
正确答案
8.如图,A,B是半径为2的圆周上的定点,P为圆周上的动点,是锐角,大小为β.图中阴影区域的面积的最大值为
正确答案
9.已知向量=(–4,3),=(6,m),且,则m=__________.
正确答案
8
10.若x,y满足 则的最小值为__________,最大值为__________.
正确答案
-3 1
11.设抛物线y2=4x的焦点为F,准线为l.则以F为圆心,且与l相切的圆的方程为__________.
正确答案
14.李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.
①当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;
②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为__________.
正确答案
140 15
12.某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.
正确答案
40
13.已知l,m是平面外的两条不同直线.给出下列三个论断:
①l⊥m;②m∥;③l⊥.
以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.
正确答案
若,则.(答案不唯一)
17.(本小题12分)
改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:
(Ⅰ)估计该校学生中上个月A,B两种支付方式都使用的人数;
(Ⅱ)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于2 000元的概率;
(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2 000元.结合(Ⅱ)的结果,能否认为样本仅使用B的学生中本月支付金额大于2 000元的人数有变化?说明理由.
正确答案
(Ⅰ)由题知,样本中仅使用A的学生有27+3=30人,仅使用B的学生有24+1=25人,
A,B两种支付方式都不使用的学生有5人.
故样本中A,B两种支付方式都使用的学生有100–30–25–5=40人.
估计该校学生中上个月A,B两种支付方式都使用的人数为.
(Ⅱ)记事件C为“从样本仅使用B的学生中随机抽取1人,该学生上个月的支付金额大于2 000元”,则.
(Ⅲ)记事件E为“从样本仅使用B的学生中随机抽查1人,该学生本月的支付金额大于2 000元”.
假设样本仅使用B的学生中,本月支付金额大于2 000元的人数没有变化,则由(II)知,=0.04.
示例1:可以认为有变化.理由如下:
比较小,概率比较小的事件一般不容易发生,一旦发生,就有理由认为本月支付金额大于2 000元的人数发生了变化.所以可以认为有变化.
示例2:无法确定有没有变化.理由如下:
事件E是随机事件,比较小,一般不容易发生,但还是有可能发生的.所以无法确定有没有变化.
19.(本小题14分)
已知椭圆的右焦点为,且经过点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设O为原点,直线与椭圆C交于两个不同点P,Q,直线AP与x轴交于点M,直线AQ与x轴交于点N,若|OM|·|ON|=2,求证:直线l经过定点.
正确答案
(I)由题意得,b2=1,c=1.
所以a2=b2+c2=2.
所以椭圆C的方程为.
(Ⅱ)设P(x1,y1),Q(x2,y2),
则直线AP的方程为.
令y=0,得点M的横坐标.
又,从而.
同理,.
由得.
则,.
所以
.
又,
所以.
`解得t=0,所以直线l经过定点(0,0).
15.(本小题13分)
在△ABC中,a=3,,cosB=.
(Ⅰ)求b,c的值;
(Ⅱ)求sin(B+C)的值.
正确答案
(Ⅰ)由余弦定理,得
.
因为,
所以.
`解得.
所以.
(Ⅱ)由得.
由正弦定理得.
在中,.
所以.
16.(本小题13分)
设{an}是等差数列,a1=–10,且a2+10,a3+8,a4+6成等比数列.
(Ⅰ)求{an}的通项公式;
(Ⅱ)记{an}的前n项和为Sn,求Sn的最小值.
正确答案
(Ⅰ)设的公差为.
因为,
所以.
因为成等比数列,
所以.
所以.
`解得.
所以.
(Ⅱ)由(Ⅰ)知,.
所以,当时,;当时,.
所以,的最小值为.
18.(本小题14分)
如图,在四棱锥中,平面ABCD,底部ABCD为菱形,E为CD的中点.
(Ⅰ)求证:BD⊥平面PAC;
(Ⅱ)若∠ABC=60°,求证:平面PAB⊥平面PAE;
(Ⅲ)棱PB上是否存在点F,使得CF∥平面PAE?说明理由.
正确答案
(Ⅰ)因为平面ABCD,
所以.
又因为底面ABCD为菱形,
所以.
所以平面PAC.
(Ⅱ)因为PA⊥平面ABCD,平面ABCD,
所以PA⊥AE.
因为底面ABCD为菱形,∠ABC=60°,且E为CD的中点,
所以AE⊥CD.
所以AB⊥AE.
所以AE⊥平面PAB.
所以平面PAB⊥平面PAE.
(Ⅲ)棱PB上存在点F,使得CF∥平面PAE.
取F为PB的中点,取G为PA的中点,连结CF,FG,EG.
则FG∥AB,且FG=AB.
因为底面ABCD为菱形,且E为CD的中点,
所以CE∥AB,且CE=AB.
所以FG∥CE,且FG=CE.
所以四边形CEGF为平行四边形.
所以CF∥EG.
因为CF平面PAE,EG平面PAE,
所以CF∥平面PAE.
20.(本小题14分)
已知函数.
(Ⅰ)求曲线的斜率为1的切线方程;
(Ⅱ)当时,求证:;
(Ⅲ)设,记在区间上的最大值为M(a),当M(a)最小时,求a的值.
正确答案
(Ⅰ)由得.
令,即,得或.
又,,
所以曲线的斜率为1的切线方程是与,
即与.
(Ⅱ)令.
由得.
令得或.
的情况如下:
所以的最小值为,最大值为.
故,即.
(Ⅲ)由(Ⅱ)知,
当时,;
当时,;
当时,.
综上,当最小时,.