- 真题试卷
- 模拟试卷
- 预测试卷
1.已知,其中是实数,是虚数单位,则的共轭复数为___________
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
2.已知线性方程组的增广矩阵为,若该线性方程组解为,则实数___________.
正确答案
1
解析
解析已在路上飞奔,马上就到!
知识点
4.若的展开式中只有第六项的二项式系数最大,则展开式中的常数项是___________
正确答案
180
解析
解析已在路上飞奔,马上就到!
知识点
5.已知集合, ,且,则___________
正确答案
7
解析
解析已在路上飞奔,马上就到!
知识点
6.中心在原点,焦点在x轴上的双曲线的一条渐近线为,焦点到渐近线的距离为3,则该双曲线的方程为___________
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
8.已知,,则( )
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
9.有一个正四面体的棱长为,现用一张圆形的包装纸将其完全包住(不能裁剪纸,但可以折叠),那么包装纸的最小半径为___________.
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
10.正项等比数列中,存在两项使得,且,则最小值___________
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
3.执行如下所示的程序框图,若输入,则输出的值为___________.
正确答案
23
解析
解析已在路上飞奔,马上就到!
知识点
7.已知,则的值为=___________
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
13.若为内一点,且,在内随机撒一颗豆子,则此豆子落在内的概率为 ___________
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
12.如图,矩形的一边在轴上,另外两个顶点在函数的图象上.若点的坐标为,记矩形的周长为,则___________
正确答案
216
解析
解析已在路上飞奔,马上就到!
知识点
11.已知实数满足,记的最大值为m,最小值为n,则m-n=___________
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
14.已知函数是偶函数,且,当时,,则方程在区间上的解的个数是___________
正确答案
10
解析
解析已在路上飞奔,马上就到!
知识点
15.若l,m为空间两条不同的直线,,为空间两个不同的平面,则l 丄的一个充分条件是( )
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
17.将正三棱柱截去三个角(如图1所示分别是三边的中点)得到几何体如图2,则该几何体按图2所示方向的侧视图(或称左视图)为( )
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
18.若函数的图象如下图1,其中为常数.则函数的大致图象是( )
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
16.某中学高二年级的一个研究性学习小组拟完成下列两项调查:
①从某社区430户高收入家庭,980户中等收入家庭,290户低收入家庭中任意选出170户调查社会购买力的某项指标;
②从本年级12名体育特长生中随机选出5人调查其学习负担情况;
则该研究性学习小组宜采用的抽样方法分别是( )
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
23.设数列对任意都有(其中、、是常数).
(I)当,,时,求;
(II)当,,时,若,,求数列的通项公式;
(III)当,,时,若数列中任意(不同)两项之和仍是该数列中的一项,且. 是数列的前项和, 满足,求数列首项的值
正确答案
(I)当,,时,
, ①
用去代得,
, ②
②—①得,,,
在①中令得,,则0,∴,
∴数列是以首项为1,公比为3的等比数列,
∴=
(II)当,,时,
, ③
用去代得,
, ④
④—③得,
, ⑤.
用去代得,
, ⑥
⑥—⑤得,,
即,.
∴数列是等差数列.
∵,,
∴公差,
∴
(III)由(II)知数列是等差数列,
∵,∴.
又对任意,
必存在使,
得,故是偶数,
又由已知,,故.
一方面,当时,,
对任意,都有.
另一方面,当时,
,,
则,
取,则,不合题意.
当时,,,则
,
∴
解析
解析已在路上飞奔,马上就到!
知识点
20.如图,某市准备在道路EF的一侧修建一条运动比赛道,赛道的前一部分为曲线段FBC.该曲线段是函数时的图象,且图象的最高点为,赛道的中间部分为长千米的直线跑道CD,且//;赛道的后一部分是以O为圆心的一段圆弧.
(Ⅰ)求的值和的大小;
(Ⅱ)若要在圆弧赛道所对应的扇形ODE区域内建一个“矩形草坪”,矩形的一边在道路EF上,一个顶点在半径OD上,另外一个顶点P在圆弧上,求“矩形草坪”面积的最大值,并求此时点的位置.
正确答案
(Ⅰ)由条件,得,.
∵,∴.
∴ 曲线段FBC的解析式为.
当x=0时,.
又CD=,
∴.
(Ⅱ)由(Ⅰ)知.
当“矩形草坪”的面积最大时,
点P 在弧DE上,故.
设,,
“矩形草坪”的面积为
=.
∵,
故取得最大值.
解析
解析已在路上飞奔,马上就到!
知识点
22.已知椭圆C:,其短轴的端点分别为A,B(如图),直线AM,BM分别与椭圆C交于E,F两点,其中点M (m,)满足,且.
(Ⅰ)用m表示点E,F的坐标;
(Ⅱ)证明直线EF与y轴交点的位置与m无关.
正确答案
(Ⅰ),M (m,),且,
直线AM的斜率为k1=,直线BM斜率为k2=,
直线AM的方程为y=,
直线BM的方程为y=,
得,
由
得,
;
(Ⅱ)据已知,,
直线EF的斜率
直线EF的方程为,
令x=0,得
EF与y轴交点的位置与m无关
解析
解析已在路上飞奔,马上就到!
知识点
21.已知函数
(1)求函数的定义域;
(2)若,试比较的大小;
(3)设,若函数有且只有一个零点,求实数k的取值范围。
正确答案
(1)
(2)在上递减,所以
(3)
解析
解析已在路上飞奔,马上就到!
知识点
19.在如图所示的组合体中,三棱柱的侧面是圆柱的轴截面,是圆柱底面圆周上不与、重合的一个点.
(Ⅰ)若圆柱的轴截面是正方形,当点是弧的中点时,求异面直线与的所成角的大小;
(Ⅱ)当点是弧的中点时,求四棱锥与圆柱的体积比.
正确答案
(Ⅰ)
(Ⅱ)设圆柱的底面半径为 ,母线长度为,
当点是弧的中点时,
,
,
∴.
解析
解析已在路上飞奔,马上就到!