阿波罗尼斯(约公元前262-190年)证明过这样一个命题:平面内到两定点距离之比为常数(
且
)的点的轨迹是圆.后人将这个圆称为阿氏圆.若平面内两定点
间的距离为2,动点
与
,
距离之比为
,当
不共线时,
面积的最大值是
高斯说过,他希望能够借助几何直观来了解自然界的基本问题.一位同学受到启发,按以下步骤给出了柯西不等式的“图形证明”:
(1)左图矩形中白色区域面积等于右图矩形中白色区域面积;
(2)左图阴影区域面积用表示为 ;
(3)右图中阴影区域的面积为 ;
(4)则柯西不等式用字母可以表示为
.
请简单表述由步骤(3)到步骤(4)的推导过程: .
如图,一位同学从处观测塔顶
及旗杆顶
,得仰角分别为
和
. 后退
(单位m)至点
处再观测塔顶
,仰角变为原来的一半,设塔
和旗杆
都垂直于地面,且
,
,
三点在同一条水平线上,则塔
的高为 m;旗杆
的高为 m.(用含有
和
的式子表示)
(本小题满分13分)
2017年,世界乒乓球锦标赛在德国的杜赛尔多夫举行.整个比赛精彩纷呈,参赛选手展现出很高的竞技水平,为观众奉献了多场精彩对决.图1(扇形图)和表1是其中一场关键比赛的部分数据统计.两位选手在此次比赛中击球所使用的各项技术的比例统计如图1.在乒乓球比赛中,接发球技术是指回接对方发球时使用的各种方法.选手乙在比赛中的接发球技术统计如表1,其中的前4项技术统称反手技术,后3项技术统称为正手技术.
图1
(Ⅰ)观察图1,在两位选手共同使用的8项技术中,差异最为显著的是哪两项技术?
(Ⅱ)乒乓球接发球技术中的拉球技术包括正手拉球和反手拉球.从表1统计的选手乙的所有拉球中任取两次,至少抽出一次反手拉球的概率是多少?
(Ⅲ)如果仅从表1中选手乙接发球得分率的稳定性来看(不考虑使用次数),你认为选手乙的反手技术更稳定还是正手技术更稳定?(结论不要求证明)
(本小题满分14分)
已知椭圆的一个焦点坐标为
.
(Ⅰ)求椭圆的方程;
(Ⅱ)已知点,过点
的直线
(与
轴不重合)与椭圆
交于
两点,直线
与直线
相交于点
,试证明:直线
与
轴平行.
(本小题满分13分)
已知函数,
.
(Ⅰ)求曲线在点
处的切线的斜率;
(Ⅱ)判断方程(
为
的导数)在区间
内的根的个数,说明理由;
(Ⅲ)若函数在区间
内有且只有一个极值点,求
的取值范围.
- 真题试卷
- 模拟试卷
- 预测试卷