8. 在股票买卖过程中,经常用到两种曲线,一种是即时价格曲线y=f(x),一种是平均价格曲线y=g(x)(如f(2)=3表示开始交易后第2小时的即时价格为3元;g(2)=4表示开始交易后两个小时内所有成交股票的平均价格为4元).下面所给出的四个图象中,实线表示y=f(x),虚线表示y=g(x),其中可能正确的是( )
16.在一次百米比赛中,甲,乙等6名同学采用随机抽签的方式决定各自的跑道,跑道编号为1至6,每人一条跑道
(Ⅰ)求甲在1或2跑道且乙不在5或6跑道的概率;
(Ⅱ)求甲乙之间恰好间隔两人的概率.
18.数列{an}的前n项和记为Sn,a1=1,an+1=2Sn+1(n≥1)
(Ⅰ)求{an}的通项公式;
(Ⅱ)等差数列{bn}的各项为正,其前n项和为Tn,且T3=15,又a1+b1,a2+b2,a3+b3成等比数列,求Tn.
(Ⅲ)设c∈,在(2)的条件下,设g(n)=Tn﹣cn,求g(n)的最小值.
19.设椭圆=1(a>b>0)的左、右焦点分别是F1和F2,离心率e=
,点F2到右准线l的距离为
.
(Ⅰ)求a、b的值;
(Ⅱ)设M、N是右准线l上两动点,满足=0.当|MN|取最小值时,求证:M,N两点关于x轴对称.
20.已知函数f(x)=x3+ax2+bx+c的图象经过原点,且在x=1处取得极大值.
(Ⅰ)求实数a的取值范围;
(Ⅱ)若方程f(x)=﹣恰好有两个不同的根,求f(x)的解析式;
(Ⅲ)对于(2)中的函数f(x),若对于任意实数α和β恒有不等式|f(2sinα)﹣f(2sinβ)|≤m成立,求m的最小值.
17.如图,在四棱柱ABCD﹣A1B1C1D1中,AB=BC=CA=,AD=CD=AA1=1,平面AA1C1C⊥平面ABCD,E为线段BC的中点,
(Ⅰ)求证:BD⊥AA1;
(Ⅱ)求证:A1E∥平面DCC1D1
(Ⅲ) 若AA1⊥AC,求A1E与面ACC1A1所成角大小.
- 真题试卷
- 模拟试卷
- 预测试卷