单选题
本大题共12小题,每小题5分,共60分。在每小题给出的4个选项中,有且只有一项是符合题目要求。
填空题
本大题共4小题,每小题4分,共16分。把答案填写在题中横线上。
1
16.若对任意,
,(
、
)有唯一确定的
与之对应,称
为关于
、
的二元函数。现定义满足下列性质的二元函数
为关于实数
、
的广义“距离”:
(1)非负性:,当且仅当
时取等号;
(2)对称性:;
(3)三角形不等式:对任意的实数z均成立。
今给出四个二元函数:
①;
②
③;
④.
能够成为关于的、
的广义“距离”的函数的所有序号是 _______
分值: 4分
查看题目解析 >
简答题(综合题)
本大题共74分。简答应写出文字说明、证明过程或演算步骤。
1
20.在直四棱柱ABCD-A1B1C1D1中,DB=BC,DB⊥AC,点M是棱BB1上一点。
(1)求证:B1D1∥平面A1BD;
(2)求证:MD⊥AC;
(3)试确定点M的位置,使得平面DMC1⊥平面CC1D1D。
分值: 12分
查看题目解析 >
1
21.某连锁分店销售某种商品,每件商品的成本为元,并且每件商品需向总店交
元的管理费,预计当每件商品的售价为
元时,一年的销售量为
万件。
(1)求该连锁分店一年的利润(万元)与每件商品的售价
的函数关系式
;
(2)当每件商品的售价为多少元时,该连锁分店一年的利润最大,并求出
的最大值。
分值: 12分
查看题目解析 >
1
22.已知函数在
上是增函数,
上是减函数。
(1)求函数的解析式;
(2)若时,
恒成立,求实数m的取值范围;
(3)是否存在实数b,使得方程在区间
上恰有两个相异实数根,若存在,求出b的范围,若不存在说明理由。
分值: 14分
查看题目解析 >
- 真题试卷
- 模拟试卷
- 预测试卷