• 文科数学 2014年高三试卷
单选题 本大题共10小题,每小题5分,共50分。在每小题给出的4个选项中,有且只有一项是符合题目要求。
1

1.已知全集U=R,集合A={x|1<x≤3},B={x|x>2},则等于(      )

A{x|1<x≤2}

B{x|1≤x<2}

C{x|1≤x≤2}

D{x|1≤x≤3}

分值: 5分 查看题目解析 >
1

2.已知复数,则复数等于(      )

A2

B

C

D

分值: 5分 查看题目解析 >
1

3.如图给出的是计算的值的程序框图,其中判断框内应填入的是(      )

A

B

C

D

分值: 5分 查看题目解析 >
1

4.已知定义在R上的函数,则命题p:“”是命题q:“不是偶函数”的(      )

A充分不必要条件

B必要不充分条件

C充要条件

D既不充分也不必要条件

分值: 5分 查看题目解析 >
1

6.一个直棱柱被一个平面截去一部分后所剩几何体的三视图如图所示,则该几何体的体积为(      )

A9

B10

C11

D

分值: 5分 查看题目解析 >
1

8.已知A(3,0),B(0,4),若圆M:上有且仅有两点C使面积等于,则实数的取值范围是(      )

A

B

C

D

分值: 5分 查看题目解析 >
1

9.已知实数.满足条件:,则的取值范围是(      )

A

B

C

D

分值: 5分 查看题目解析 >
1

10.已知点P在以为圆心.半径为1的扇形区域AOB(含边界)内移动,,E.F分别是OA.OB的中点,若其中,则的最大值是(      )

A4

B2

C

D8

分值: 5分 查看题目解析 >
1

7.将函数的图象向左平移个单位,若所得的图象与原图象重合,则的值不可能等于(      )

A4

B6

C8

D12

分值: 5分 查看题目解析 >
1

5.已知命题:,使得,则命题是(      )

A,使得

B,都有

C,都有

D,都有

分值: 5分 查看题目解析 >
填空题 本大题共5小题,每小题5分,共25分。把答案填写在题中横线上。
1

13.已知函数的零点在区间上,,则_________。

分值: 5分 查看题目解析 >
1

11.角终边上一点M(),且,则= ___________。

分值: 5分 查看题目解析 >
1

12.若抛物线的焦点坐标为(0,1),则=___________。

分值: 5分 查看题目解析 >
1

15.给出下列四个命题:

① 函数的图象关于点对称;

② 若,则

③ 存在唯一的实数,使

④ 已知为双曲线上一点,.分别为双曲线的左右焦点,且,则

其中正确命题的序号是________。

分值: 5分 查看题目解析 >
1

14.在中,内一点,且满足,则=   ___________。

分值: 5分 查看题目解析 >
简答题(综合题) 本大题共75分。简答应写出文字说明、证明过程或演算步骤。
1

16.已知函数为偶函数,且函数图象的两相邻对称轴间的距离为

(1)求函数的解析式;

(2)已知△ABC中角 A.B.C所对的边分别是,且,求的值.

分值: 12分 查看题目解析 >
1

18.已知为数列{}的前项和,且2,N

(1)求数列{}的通项公式;

(2)若数列满足 ,求的前项和

分值: 12分 查看题目解析 >
1

17.在某高校自主招生考试中,所有选报II类志向的考生全部参加了“数学与逻辑”和“阅读与表达”两个科目的考试,成绩分为A,B,C,D,E五个等级. 某考场考生的两科考试成绩数据统计如下图所示,其中“数学与逻辑”科目的成绩为B的考生有10人.

(1)求该考场考生中“阅读与表达”科目中成绩为A的人数;

(2)若等级A,B,C,D,E分别对应5分,4分,3分,2分,1分,求该考场考生“数学与逻辑”科目的平均分;

(3)已知参加本考场测试的考生中,恰有两人的两科成绩均为A. 在至少一科成绩为A的考生中,随机抽取两人进行访谈,求这两人的两科成绩均为A的概率。

分值: 12分 查看题目解析 >
1

20.已知椭圆C: 的离心率为,且椭圆C上的点到点的距离的最大值为3.

(1)求椭圆C的方程。

(2)已知过点T(0,2)的直线与椭圆C交于A、B两点,若在x轴上存在一点,使,求直线的斜率的取值范围。

分值: 13分 查看题目解析 >
1

19.如图,在四棱锥中,底面,,,,的中点。

(1)求证:;

(2)在线段上是否存在点,使?若存在,指出点的位置,并证明;若不存在,请说明理由。

分值: 12分 查看题目解析 >
1

21.已知函数在点处的切线与直线垂直,

(1)求实数的值和函数的单调区间;

(2)若,数列,求实数的取值范围,使对任意,不等式恒成立。

分值: 14分 查看题目解析 >
  • 上一题
  • 1/21
  • 下一题

点击 “立即下载”

即可下载本试卷,含解析哦

知道啦