- 真题试卷
- 模拟试卷
- 预测试卷
5.已知抛物线的焦点为,准线为,若与双曲线的两条渐近线分别交于点和点,且(为原点),则双曲线的离心率为
正确答案
7.已知函数是奇函数,将的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为.若的最小正周期为,且,则
正确答案
1.设集合,则
正确答案
2.设变量满足约束条件则目标函数的最大值为
正确答案
3.设,则“”是“”的
正确答案
4.阅读下边的程序框图,运行相应的程序,输出的值为
正确答案
6.已知,,,则的大小关系为
正确答案
8.已知,设函数若关于的不等式在上恒成立,则的取值范围为
正确答案
9.是虚数单位,则的值为_____________.
正确答案
10.的展开式中的常数项为_____________.
正确答案
13.设,则的最小值为_____________.
正确答案
12.设,直线和圆(为参数)相切,则的值为_____________.
正确答案
14.在四边形中,,点在线段的延长线上,且,则_____________.
正确答案
-1
11.已知四棱锥的底面是边长为的正方形,侧棱长均为.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为_____________.
正确答案
16.(本小题满分13分)
设甲、乙两位同学上学期间,每天7:30之前到校的概率均为.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.
(Ⅰ)用表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量的分布列和数学期望;
(Ⅱ)设为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件发生的概率.
正确答案
因为甲同学上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为,故,从而.
所以,随机变量的分布列为
随机变量的数学期望.
(Ⅱ):设乙同学上学期间的三天中7:30之前到校的天数为,则,且.由题意知事件与互斥,且事件与,事件与均相互独立,从而由(Ⅰ)知
.
20.(本小题满分14分)
设函数为的导函数.
(Ⅰ)求的单调区间;
(Ⅱ)当时,证明;
(Ⅲ)设为函数在区间内的零点,其中,证明.
正确答案
本小题主要考查导数的运算、不等式证明、运用导数研究函数的性质等基础知识和方法.考查函数思想和化归与转化思想.考查抽象概括能力、综合分析问题和解决问题的能力.满分14分.
(Ⅰ):由已知,有.因此,当时,有,得,则单调递减;当时,有,得,则单调递增.
所以,的单调递增区间为的单调递减区间为.
(Ⅱ)证明:记.依题意及(Ⅰ),有,从而.当时,,故
.
因此,在区间上单调递减,进而.
所以,当时,.
(Ⅲ)证明:依题意,,即.记,则,且.
由及(Ⅰ),得.由(Ⅱ)知,当时,,所以在上为减函数,因此.又由(Ⅱ)知,,故
.
所以,.
15.(本小题满分13分)
在中,内角所对的边分别为.已知,.
(Ⅰ)求的值;
(Ⅱ)求的值.
正确答案
在中,由正弦定理,得,又由,得,即.又因为,得到,.由余弦定理可得.
(Ⅱ):由(Ⅰ)可得,从而,,故
17.(本小题满分13分)
如图,平面,,.
(Ⅰ)求证:平面;
(Ⅱ)求直线与平面所成角的正弦值;
(Ⅲ)若二面角的余弦值为,求线段的长.
正确答案
依题意,可以建立以为原点,分别以的方向为轴,轴,轴正方向的空间直角坐标系(如图),可得,.设,则.
(Ⅰ)证明:依题意,是平面的法向量,又,可得,又因为直线平面,所以平面.
(Ⅱ):依题意,.
设为平面的法向量,则即不妨令,
可得.因此有.
所以,直线与平面所成角的正弦值为.
(Ⅲ):设为平面的法向量,则即
不妨令,可得.
由题意,有,解得.经检验,符合题意.
所以,线段的长为.
18.(本小题满分13分)
设椭圆的左焦点为,上顶点为.已知椭圆的短轴长为4,离心率为.
(Ⅰ)求椭圆的方程;
(Ⅱ)设点在椭圆上,且异于椭圆的上、下顶点,点为直线与轴的交点,点在轴的负半轴上.若(为原点),且,求直线的斜率.
正确答案
本小题主要考查椭圆的标准方程和几何性质、直线方程等基础知识.考查用代数方法研究圆锥曲线的性质.考查运算求解能力,以及用方程思想解决问题的能力.满分13分.
(Ⅰ):设椭圆的半焦距为,依题意,,又,可得,.
所以,椭圆的方程为.
(Ⅱ):由题意,设.设直线的斜率为,又,则直线的方程为,与椭圆方程联立整理得,可得,代入得,进而直线的斜率.在中,令,得.由题意得,所以直线的斜率为.由,得,化简得,从而.
所以,直线的斜率为或.
19.(本小题满分14分)
设是等差数列,是等比数列.已知.
(Ⅰ)求和的通项公式;
(Ⅱ)设数列满足其中.
(i)求数列的通项公式;
(ii)求.
正确答案
本小题主要考查等差数列、等比数列的通项公式及其前项和公式等基础知识.考查化归与转化思想和数列求和的基本方法以及运算求解能力.满分14分.
(Ⅰ):设等差数列的公差为,等比数列的公比为.依题意得解得故.
所以,的通项公式为的通项公式为.
(Ⅱ)(i):.
所以,数列的通项公式为.
(ii):
.