15. 若X是一个集合,τ是一个以X的某些子集为元素的集合,且满足:
①X属于τ,∅属于τ;
②τ中任意多个元素的并集属于τ;
③τ中任意多个元素的交集属于τ.则称τ是集合X上的一个拓扑.已知集合X={a,b,c},对于下面给出的四个集合τ:
①τ={∅,{a},{c},{a,b,c}};
②τ={∅,{b},{c},{b,c},{a,b,c}};
③τ={∅,{a},{a,b},{a,c}};
④τ={∅,{a,c},{b,c},{c},{a,b,c}}.
其中是集合X上的拓扑的集合τ的序号是 ().
20. 椭圆=1的左右焦点分别为F1,F2,直线l:x+my=
恒过椭圆的右焦点F2,且与椭圆交于P,Q两点,已知△F1PQ的周长为8,点O为坐标原点.
(1)求椭圆C的方程;
(2)若直线l:y=kx+t与椭圆C交于M,N两点,以线段OM,ON为邻边作平行四边形OMGN
其中G在椭圆C上,当≤|t|≤1时,求|OG|的取值范围.
21. 已知函数f(x)=x﹣alnx(a∈R).
(1)当a=2时,求曲线f(x)在x=1处的切线方程;
(2)设函数h(x)=f(x)+,求函数h(x)的单调区间;
(3)若g(x)=﹣,在[1,e](e=2.71828…)上存在一点x0,使得f(x0)≤g(x0)成立,求a的取值范围.
19. 已知数列{an}的前n项和为Sn,an.Sn满足(t﹣1)Sn=t(an﹣2)(t为常数,t≠0且t≠1).
(1)求数列{an}的通项公式;
(2)设bn=(﹣an)•log3(1﹣Sn),当t=时,求数列{bn}的前n项和Tn.
17. 某商区停车场临时停车按时段收费,收费标准为:每辆汽车一次停车不超过1小时收费6元,超过1小时的部分每小时收费8元(不足1小时的部分按1小时计算).现有甲、乙二人在该商区临时停车,两人停车都不超过4小时.
(1)若甲停车1小时以上且不超过2小时的概率为,停车付费多于14元的概率为
,求甲停车付费恰为6元的概率;
(2)若每人停车的时长在每个时段的可能性相同,求甲、乙二人停车付费之和为36元的概率.
18. 如图正方形ABCD的边长为ABCD的边长为2,四边形BDEF是平行四边形,BD与AC交于点G,O为GC的中点,FO=
,且FO⊥平面ABCD.
(1)求证:AE∥平面BCF;
(2)求证CF⊥平面AEF.
- 真题试卷
- 模拟试卷
- 预测试卷