14.在三棱住ABC-A1B1C1中,∠BAC=90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设点M,N,P分别是AB,BC,B1C1的中点,则三棱锥P-A1MN的体积是______.
15.已知函数f(x)=2x,g(x)=x2+ax(其中a∈R).对于不相等的实数x1,x2,设m=,n=
,现有如下命题:
①对于任意不相等的实数x1,x2,都有m>0;
②对于任意的a及任意不相等的实数x1,x2,都有n>0;
③对于任意的a,存在不相等的实数x1,x2,使得m=n;
④对于任意的a,存在不相等的实数x1,x2,使得m=-n.
其中真命题有___________________(写出所有真命题的序号).
设数列{an}(n=1,2,3…)的前n项和Sn满足Sn=2an-a3,且a1,a2+1,a3成等差数列.
16.求数列的通项公式;
17.设数列的前n项和为Tn,求Tn.
一辆小客车上有5个座位,其座位号为1,2,3,4,5,乘客P1,P2,P3,P4,P5的座位号分别为1,2,3,4,5,他们按照座位号顺序先后上车,乘客P1因身体原因没有坐自己号座位,这时司机要求余下的乘客按以下规则就坐:如果自己的座位空着,就只能坐自己的座位.如果自己的座位已有乘客就坐,就在这5个座位的剩余空位中选择座位.
18.P1坐到了3号座位,其他乘客按规则就座,则此时共有4种坐法.下表给出其中两种坐法,请填入余下两种坐法(将乘客就坐的座位号填入表中空格处)
19.P1坐到了2号座位,其他乘客按规则就坐,求乘客P1坐到5号座位的概率.
一个正方体的平面展开图及该正方体的直观图的示意图如图所示.
20.母F,G,H标记在正方体相应地顶点处(不需要说明理由)
21.面BEG与平面ACH的位置关系.并说明你的结论.
22.证明:直线DF平面BEG
如图,椭圆E:(a>b>0)的离心率是
,点(0,1)在短轴CD上,且
=-1
25.求椭圆E的方程;
26.设O为坐标原点,过点P的动直线与椭圆交于A、B两点.是否存在常数λ,使得为定值?若存在,求λ的值;若不存在,请说明理由.
已知函数f(x)=-2lnx+x2-2ax+a2,其中a>0.
27.设g(x)为f(x)的导函数,讨论g(x)的单调性;
28.证明:存在a∈(0,1),使得f(x)≥g(x).
- 真题试卷
- 模拟试卷
- 预测试卷