• 2018年高考真题 理科数学 (全国II卷)
前去估分
单选题 本大题共12小题,每小题5分,共60分。在每小题给出的4个选项中,有且只有一项是符合题目要求。
1

2.已知集合,则中元素的个数为

A9

B8

C5

D4

分值: 5分 查看题目解析 >
1

5.双曲线的离心率为,则其渐近线方程为

A

B

C

D

分值: 5分 查看题目解析 >
1

3.函数的图像大致为

AA

BB

CC

DD

分值: 5分 查看题目解析 >
1

6.在中,,则

A

B

C

D

分值: 5分 查看题目解析 >
1

10.若是减函数,则的最大值是

A

B

C

D

分值: 5分 查看题目解析 >
1

4.已知向量满足,则

A4

B3

C2

D0

分值: 5分 查看题目解析 >
1

1.

A

B

C

D

分值: 5分 查看题目解析 >
1

7.为计算,设计了右侧的程序框图,则在空白框中应填入

A

B

C

D

分值: 5分 查看题目解析 >
1

8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是

A

B

C

D

分值: 5分 查看题目解析 >
1

9.在长方体中,,则异面直线所成角的余弦值为

A

B

C

D

分值: 5分 查看题目解析 >
1

11.已知是定义域为的奇函数,满足.若,则

A

B0

C2

D50

分值: 5分 查看题目解析 >
1

12.已知是椭圆的左、右焦点,的左顶点,点在过且斜率为的直线上,为等腰三角形,,则的离心率为

A

B

C

D

分值: 5分 查看题目解析 >
填空题 本大题共4小题,每小题5分,共20分。把答案填写在题中横线上。
1

13.曲线在点处的切线方程为__________.

分值: 5分 查看题目解析 >
1

15.已知,则__________.

分值: 5分 查看题目解析 >
1

16.已知圆锥的顶点为,母线所成角的余弦值为与圆锥底面所成角为45°,若的面积为,则该圆锥的侧面积为__________.

分值: 5分 查看题目解析 >
1

14.若满足约束条件的最大值为__________.

分值: 5分 查看题目解析 >
简答题(综合题) 本大题共70分。简答应写出文字说明、证明过程或演算步骤。
1

17.(12分)

为等差数列的前项和,已知

(1)求的通项公式;

(2)求,并求的最小值.

分值: 12分 查看题目解析 >
1

18.(12分)

下图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.

为了预测该地区2018年的环境基础设施投资额,建立了与时间变量的两个线性回归模型.根据2000年至2016年的数据(时间变量的值依次为)建立模型①:;根据2010年至2016年的数据(时间变量的值依次为)建立模型②:

(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;

(2)你认为用哪个模型得到的预测值更可靠?并说明理由.

分值: 12分 查看题目解析 >
1

19.(12分)

设抛物线的焦点为,过且斜率为的直线交于两点,

(1)求的方程

(2)求过点且与的准线相切的圆的方程.

分值: 12分 查看题目解析 >
1

20.(12分)

如图,在三棱锥中,的中点.

(1)证明:平面

(2)若点在棱上,且二面角,求与平面所成角的正弦值.

分值: 12分 查看题目解析 >
1

(二)选考题:共10分.请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分.

22.[选修4-4:坐标系与参数方程](10分)

在直角坐标系中,曲线的参数方程为为参数),直线的参数方程为

为参数).

(1)求的直角坐标方程;

(2)若曲线截直线所得线段的中点坐标为,求的斜率.

23.[选修4-5:不等式选讲](10分)

设函数

(1)当时,求不等式的解集;

(2)若,求的取值范围.

分值: 10分 查看题目解析 >
1

21.(12分)

已知函数

(1)若,证明:当时,

(2)若只有一个零点,求

分值: 12分 查看题目解析 >
  • 上一题
  • 1/22
  • 下一题

点击 “立即下载”

即可下载本试卷,含解析哦

知道啦