单选题
本大题共8小题,每小题5分,共40分。在每小题给出的4个选项中,有且只有一项是符合题目要求。
填空题
本大题共6小题,每小题5分,共30分。把答案填写在题中横线上。
1
9. 某校高中生共有2000人,其中高一年级560人,高二年级640人,高三年级800人,现采取分层抽样抽取容量为100的样本,那么高二年级应抽取的人数为( )人。
分值: 5分
查看题目解析 >
简答题(综合题)
本大题共80分。简答应写出文字说明、证明过程或演算步骤。
1
17. 如图,已知四棱锥E-ABCD的底面为菱形,且∠ABC=60°,AB=EC=2,AE=BE=
(1)求证:平面EAB⊥平面ABCD
(2)求二面角A-EC-D的余弦值
分值: 13分
查看题目解析 >
1
16.张师傅驾车从公司开往火车站,途径4个公交站,这四个公交站将公司到火车站分成5个路段,每个路段的驾车时间都是3分钟,如果遇到红灯要停留1分钟,假设他在各交通岗是否遇到红灯是相互独立的,并且概率都是
(1)求张师傅此行时间不少于16分钟的概率
(2)记张师傅此行所需时间为Y分钟,求Y的分布列和均值
分值: 13分
查看题目解析 >
1
19. 设点P是曲线C:上的动点,点P到点(0,1)的距离和它到焦点F的距离之和的最小值为
(1)求曲线C的方程
(2)若点P的横坐标为1,过P作斜率为的直线交C与另一点Q,交x轴于点M,过点Q且与PQ垂直的直线与C交于另一点N,问是否存在实数k,使得直线MN与曲线C相切?若存在,求出k的值,若不存在,说明理由。
分值: 14分
查看题目解析 >
- 真题试卷
- 模拟试卷
- 预测试卷