理科数学 黄浦区2014年高三试卷
精品
|
填空题 本大题共14小题,每小题4分,共56分。把答案填写在题中横线上。
1
题型:填空题
|
分值: 4分

3.  执行如下图所示的程序框图,若输入,则输出的值为__________.

正确答案

23

解析

解析已在路上飞奔,马上就到!

知识点

程序框图
1
题型:填空题
|
分值: 4分

4.若的展开式中只有第六项的二项式系数最大,则展开式中的常数项是__________

正确答案

180

解析

解析已在路上飞奔,马上就到!

知识点

复合函数的单调性
1
题型:填空题
|
分值: 4分

7.已知,则的值为__________

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

指数函数的单调性与特殊点
1
题型:填空题
|
分值: 4分

10.正项等比数列中,存在两项使得,且,则最小值__________

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

导数的乘法与除法法则
1
题型:填空题
|
分值: 4分

1.已知,其中是实数,是虚数单位,则的共轭复数为__________

正确答案

2-i

解析

解析已在路上飞奔,马上就到!

知识点

指数函数的图像变换
1
题型:填空题
|
分值: 4分

2.已知线性方程组的增广矩阵为,若该线性方程组解为,则实数__________.

正确答案

1

解析

解析已在路上飞奔,马上就到!

知识点

指数函数的图像变换
1
题型:填空题
|
分值: 4分

6.中心在原点,焦点在x轴上的双曲线的一条渐近线为,焦点到渐近线的距离为3,则该双曲线的方程为______

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

二次函数的应用
1
题型:填空题
|
分值: 4分

8.已知,则__________

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

简单复合函数的导数
1
题型:填空题
|
分值: 4分

9.有一个正四面体的棱长为,现用一张圆形的包装纸将其完全包住(不能裁剪纸,但可以折叠),那么包装纸的最小半径为__________.

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

指数函数的图像变换
1
题型:填空题
|
分值: 4分

11.已知曲线的极坐标方程分别为,则曲线交点的极坐标为__________.

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

幂函数的概念、解析式、定义域、值域
1
题型:填空题
|
分值: 4分

12.若内一点,且,在内随机撒一颗豆子,则此豆子落在内的概率为__________

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

幂函数的概念、解析式、定义域、值域
1
题型:填空题
|
分值: 4分

14.已知函数是偶函数,且,当时,,则方程在区间上的解的个数是__________

正确答案

9

解析

解析已在路上飞奔,马上就到!

知识点

二次函数的应用
1
题型:填空题
|
分值: 4分

13.如图,矩形的一边轴上,另外两个顶点在函数的图象上.若点的坐标为,记矩形的周长为,则__________

正确答案

216

解析

解析已在路上飞奔,马上就到!

知识点

简单复合函数的导数
1
题型:填空题
|
分值: 4分

5.已知集合 ,且,则__________

正确答案

7

解析

解析已在路上飞奔,马上就到!

知识点

交集及其运算绝对值不等式的解法
单选题 本大题共4小题,每小题5分,共20分。在每小题给出的4个选项中,有且只有一项是符合题目要求。
1
题型: 单选题
|
分值: 5分

17.圆的圆心到直线为参数)的距离为()

A

B1

C

D

正确答案

A

解析

解析已在路上飞奔,马上就到!

知识点

幂函数的概念、解析式、定义域、值域
1
题型: 单选题
|
分值: 5分

15.若为空间两条不同的直线,为空间两个不同的平面,则的一个充分条件是(   )

A//

B

C//

D//

正确答案

C

解析

解析已在路上飞奔,马上就到!

知识点

复合函数的单调性
1
题型: 单选题
|
分值: 5分

16.某中学高二年级的一个研究性学习小组拟完成下列两项调查:

①从某社区430户高收入家庭,980户中等收入家庭,290户低收入家庭中任意选出170户调查社会购买力的某项指标;

②从本年级12名体育特长生中随机选出5人调查其学习负担情况;则该研究性学习小组宜采用的抽样方法分别是()

A①用系统抽样,②用随机抽样

B①用系统抽样,②用分层抽样

C①用分层抽样,②用系统抽样

D①用分层抽样,②用随机抽样

正确答案

D

解析

解析已在路上飞奔,马上就到!

知识点

幂函数的概念、解析式、定义域、值域
1
题型: 单选题
|
分值: 5分

18.若函数的图象如下图1,其中为常数.则函数的大致图象是(   )

A

B

C

D

正确答案

D

解析

解析已在路上飞奔,马上就到!

知识点

指数函数的图像变换
简答题(综合题) 本大题共74分。简答应写出文字说明、证明过程或演算步骤。
1
题型:简答题
|
分值: 14分

20.如图,某市准备在道路EF的一侧修建一条运动比赛道,赛道的前一部分为曲线段FBC.该曲线段是函数时的图象,且图象的最高点为,赛道的中间部分为长千米的直线跑道CD,且//;赛道的后一部分是以O为圆心的一段圆弧

(Ⅰ)求的值和的大小;

(Ⅱ)若要在圆弧赛道所对应的扇形ODE区域内建一个“矩形草坪”,矩形的一边在道路EF上,一个顶点在半径OD上,另外一个顶点P在圆弧上,求“矩形草坪”面积的最大值,并求此时点的位置.

正确答案

(Ⅰ)由条件,得

∵ ,∴

∴ 曲线段FBC的解析式为

当x=0时,.又CD=

∴ 

(Ⅱ)由(Ⅰ)知

当“矩形草坪”的面积最大时,

点P 在弧DE上,故

,“矩形草坪”的面积为

=

∵ 

取得最大值

解析

解析已在路上飞奔,马上就到!

知识点

函数的概念及其构成要素
1
题型:简答题
|
分值: 14分

21.已知函数

(1)求函数的定义域;

(2)若,试比较的大小;

(3)设,若函数有且只有一个零点,求实数k的取值范围.

正确答案

(1)

(2)上递减,所以“

(3)

解析

解析已在路上飞奔,马上就到!

知识点

简单复合函数的导数
1
题型:简答题
|
分值: 12分

19.如图,为矩形,为梯形,平面平面

(Ⅰ)若中点,求证:∥平面

(Ⅱ)求平面所成锐二面角的大小.

正确答案

(Ⅰ)证明:连结,交,连结

中,分别为两腰的中点,

∴ 

 ,又

 平面

(Ⅱ)解法一:设平面所成锐二面角的大小为 

为空间坐标系的原点,分别以所在直线

轴建立空间直角坐标系,

设平面的单位法向量为

则可设

设面的法向量,应有

即:

解得:

所以 ,

∴  ,

所以平面所成锐二面角为60°.

解析

解析已在路上飞奔,马上就到!

知识点

直线与平面平行的判定与性质
1
题型:简答题
|
分值: 16分

22.已知椭圆C:的短轴的端点分别为A,B(如图),直线AM,BM分别与椭圆C交于E,F两点,其中点M (m,) 满足,且

(1)用m表示点E,F的坐标;

(2)证明直线EF与y轴交点的位置与m无关.

(3)若∆BME面积是∆AMF面积的5倍,求m的值.

正确答案

(1),M (m,),且

直线AM的斜率为k1=,直线BM斜率为k2=

直线AM的方程为y= ,

直线BM的方程为y= ,

(2)据已知,

直线EF的斜率

直线EF的方程为

令x=0,得

 EF与y轴交点的位置与m无关.

(3)

 

整理方程得

为所求.

解析

解析已在路上飞奔,马上就到!

知识点

幂函数的图像
1
题型:简答题
|
分值: 18分

23.设数列对任意都有(其中是常数) .

(I)当时,求

(II)当时,若,求数列的通项公式;

(III)若数列中任意(不同)两项之和仍是该数列中的一项,则称该数列是“封闭数列”.当时,设是数列的前项和,,试问:是否存在这样的“封闭数列” ,使得对任意,都有,且.若存在,求数列的首项的所有取值;若不存在,说明理由.

正确答案

(I)当时,

, ①

去代 得,

,②

②—①得,

在①中令得,,则0,

∴数列是以首项为1,公比为3的等比数列,

=

(II)当时,

,③

去代得,

,④

④—③得,,⑤.

去代得,

,⑥

⑥—⑤得,

,.

∴数列是等差数列.

∴公差

(III)由(II)知数列是等差数列,

,∴

是“封闭数列”,

得:对任意,必存在使

,故是偶数,

又由已知,,故

一方面,当时,

,对任意

都有

另一方面,

时,

,则,不合题意.

时,

,则

时,

解析

解析已在路上飞奔,马上就到!

知识点

指数函数的单调性与特殊点

点击 “立即下载”

即可下载本试卷,含解析哦

知道啦