定义:对于各项均为整数的数列,如果
(
=1,2,3,…)为完全平方数,则称数列
具有“
性质”;不论数
列
是
否具有“
性质”,如果存在数列
与
不是同一数列,且
满足下面两个条件:
(1)是
的一个排列;
(2)数列
具有“
性质”,则称数列
具有“变换
性质”.给出下面三个数列:
①数列的前
项和
;②数列
:1,2,3,4,5;
③数列:1,2,3,4,5,6.具有“
性质”的为 ;具有“变换
性质”的为 .
本小题满分12分(第1小题满分5分,第2小题满分7分)
已知函数
的最大值为2.
(1)求函数在
上的值域;
(2)已知外接圆半径
,
,角A,B所对的边分别是a,b,求
的值.
本题满分14分(第1小题满分6分,第2小题满分8分)
设,函数
的图像与函数
的图像关于点
对称.
(1)求函数的解析式;
(2)若关于的方程
有两个不同的正数解,求实数
的取值范围.
本小题满分14分(第1小题满分6分,第2小题满分8分)
如图1,,
是某地一个湖泊的两条互相垂直的湖堤,线段
和曲线段
分别是湖泊中的一座栈桥和一条防波堤.为观光旅游的需要,拟过栈桥
上某点
分别修建与
,
平行的栈桥
、
,且以
、
为边建一个跨越水面的三角形观光平台
.建立如图2所示的直角坐标系,测得线段
的方程是
,曲线段
的方程是
,设点
的坐标为
,记
.(题中所涉及的长度单位均为米,栈桥和防波堤都不计宽度)
(1)求的取值范围;
(2)试写出三角形观光平台面积
关于
的函数解析式,并求出该面积的最小值
本小题满分18分(第1小题满分4分,第2小题满分14分)
已知数列,
满足:
.
(1)若,求数列
的通项公式;
(2)若,且
.
① 记,求证:数列
为等差数列;
② 若数列中任意一项的值均未在该数列中重复出现无数次,求首项
应满足的条件.
本小题满分16分(第1小题满分4分,第2小题满分4分,第3小题满分8分)
已知椭圆过点
,椭圆
左右焦点分别为
,上顶点为
,
为等边三角形.定义椭圆C上的点
的“伴随点”为
.
(1)求椭圆C的方程;
(2)求的最大值;
(3)直线l交椭圆C于A、B两点,若点A、B的“伴随点”分别是P、Q,且以PQ为直径的圆经过坐标原点O.椭圆C的右顶点为D,试探究ΔOAB的面积与ΔODE的面积的大小关系,并证明.
- 真题试卷
- 模拟试卷
- 预测试卷