5.的展开式中
的系数为
正确答案
3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是
正确答案
7.函数的图像大致为
正确答案
8.某群体中的每位成员使用移动支付的概率都为,各成员的支付方式相互独立,设
为该群体的10位成员中使用移动支付的人数,
,
,则
正确答案
10.设是同一个半径为4的球的球面上四点,
为等边三角形且其面积为
,则三棱锥
体积的最大值为
正确答案
2.
正确答案
4.若,则
正确答案
1.已知集合,
,则
正确答案
6.直线分别与
轴,
轴交于
,
两点,点
在圆
上,则
面积的取值范围是
正确答案
9.的内角
的对边分别为
,
,
,若
的面积为
,则
正确答案
11.设是双曲线
(
)的左,右焦点,
是坐标原点.过
作
的一条渐近线的垂线,垂足为
.若
,则
的离心率为
正确答案
12.设,
,则
正确答案
18.(12分)
某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人。第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:
(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;
(2)求40名工人完成生产任务所需时间的中位数,并将完成生产任务所需时间超过
和不超过
的工人数填入下面的列联表:
正确答案
1)第二种生产方式的效率更高.
理由如下:
(i)由茎叶图可知:用第一种生产方式的工人中,有75%的工人完成生产任务所需时间至少80分钟,用第二种生产方式的工人中,有75%的工人完成生产任务所需时间至多79分钟.因此第二种生产方式的效率更高.
(ii)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间的中位数为85.5分钟,用第二种生产方式的工人完成生产任务所需时间的中位数为73.5分钟.因此第二种生产方式的效率更高.
(iii)由茎叶图可知:用第一种生产方式的工人完成生产任务平均所需时间高于80分钟;用第二种生产方式的工人完成生产任务平均所需时间低于80分钟,因此第二种生产方式的效率更高.
(iv)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎8上的最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致呈对称分布,又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少,因此第二种生产方式的效率更高.
以上给出了4种理由,考生答出其中任意一种或其他合理理由均可得分.
(2)由茎叶图知.
列联表如下:
(3)由于
,所以有99%的把握认为两种生产方式的效率有差异.
17.(12分)
等比数列中,
.
(1)求的通项公式;
(2)记为
的前
项和.若
,求
.
正确答案
(1)设的公比为
,由题设得
.
由已知得,解得
(舍去),
或
.
故或
.
(2)若,则
.由
得
,此方程没有正整数解.
若,则
.由
得
,解得
.
综上,.
19.(12分)
如图,边长为2的正方形所在的平面与半圆弧
所在平面垂直,
是
上异于
,
的点.
(1)证明:平面平面
;
(2)当三棱锥体积最大时,求面
与面
所成二面角的正弦值.
正确答案
(1)由题设知,平面CMD⊥平面ABCD,交线为CD.因为BC⊥CD,BC平面ABCD,所以BC⊥平面CMD,故BC⊥DM.
因为M为上异于C,D的点,且DC为直径,所以 DM⊥CM.
又 BCCM=C,所以DM⊥平面BMC.
而DM平面AMD,故平面AMD⊥平面BMC.
(2)以D为坐标原点,的方向为x轴正方向,建立如图所示的空间直角坐标系D−xyz.
当三棱锥M−ABC体积最大时,M为的中点.
由题设得,
设是平面MAB的法向量,则
即
可取.
是平面MCD的法向量,因此
,
,
所以面MAB与面MCD所成二面角的正弦值是.
20.(12分)
已知斜率为的直线
与椭圆
交于
,
两点,线段
的中点为
.
(1)证明:;
(2)设为
的右焦点,
为
上一点,且
.证明:
,
,
成等差数列,并求该数列的公差.
正确答案
(1)设,则
.
两式相减,并由得
.
由题设知,于是
.①
由题设得,故
.
(2)由题意得,设
,则
.
由(1)及题设得.
又点P在C上,所以,从而
,
.
于是
.
同理.
所以.
故,即
成等差数列.
设该数列的公差为d,则
.②
将代入①得
.
所以l的方程为,代入C的方程,并整理得
.
故,代入②解得
.
所以该数列的公差为或
.
(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。
22.[选修4—4:坐标系与参数方程](10分)
在平面直角坐标系中,
的参数方程为
(
为参数),过点
且倾斜角为
的直线
与
交于
两点.
(1)求的取值范围;
(2)求中点
的轨迹的参数方程.
23.[选修4—5:不等式选讲](10分)
设函数.
(1)画出的图像;
(2)当,
,求
的最小值.
正确答案
(1)的直角坐标方程为
.
当时,
与
交于两点.
当时,记
,则
的方程为
.
与
交于两点当且仅当
,解得
或
,即
或
.
综上,的取值范围是
.
(2)的参数方程为
为参数,
.
设,
,
对应的参数分别为
,
,
,则
,且
,
满足
.
于是,
.又点
的坐标
满足
所以点的轨迹的参数方程是
为参数,
.
正确答案
(1)的图像如图所示.
(2)由(1)知,的图像与
轴交点的纵坐标为
,且各部分所在直线斜率的最大值为
,故当且仅当
且
时,
在
成立,因此
的最小值为
21.(12分)
已知函数.
(1)若,证明:当
时,
;当
时,
;
(2)若是
的极大值点,求
.
正确答案
(1)当时,
,
.
设函数,则
.
当时,
;当
时,
.故当
时,
,且仅当
时,
,从而
,且仅当
时,
.
所以在
单调递增.
又,故当
时,
;当
时,
.
(2)(i)若,由(1)知,当
时,
,这与
是
的极大值点矛盾.
(ii)若,设函数
.
由于当时,
,故
与
符号相同.
又,故
是
的极大值点当且仅当
是
的极大值点.
.
如果,则当
,且
时,
,故
不是
的极大值点.
如果,则
存在根
,故当
,且
时,
,所以
不是
的极大值点.
如果,则
.则当
时,
;当
时,
.所以
是
的极大值点,从而
是
的极大值点
综上,.
13.已知向量,
,
.若
,则
________.
正确答案
14.曲线在点
处的切线的斜率为
,则
________.
正确答案
16.已知点和抛物线
,过
的焦点且斜率为
的直线与
交于
,
两点.若
,则
________.
正确答案
2
15.函数在
的零点个数为________.
正确答案
3