填空题
本大题共5小题,每小题5分,共25分。把答案填写在题中横线上。
1
15.对于函数给出定义:
设是函数
的导数,
是函数
的导数,若方程
有实数解
,则称点
为函数
的“拐点”.
某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.给定函数
,请你根据上面探究结果,计算
= .
分值: 5分
查看题目解析 >
简答题(综合题)
本大题共75分。简答应写出文字说明、证明过程或演算步骤。
1
如图,四边形ABCD中,AB⊥AD,AD∥BC,AD=3,BC=2AB=2,E,F分别在BC,AD上,EF∥AB.现将四边形ABEF沿EF折起,使平面ABEF⊥平面EFDC.
20.若,在折叠后的线段
上是否存在一点
,且
,
使得∥平面ABEF?若存在,求出λ的值;若不存在,说明理由;
21.求三棱锥A-CDF的体积的最大值,并求此时二面角E-AC-F的余弦值.
分值: 12分
查看题目解析 >
1
2016年上半年,股票投资人袁先生同时投资了甲、乙两只股票,其中甲股票赚钱的概率为,赔钱的概率是
;乙股票赚钱的概率为
,赔钱的概率为
.对于甲股票,若赚钱则会赚取5万元,若赔钱则损失4万元;对于乙股票,若赚钱则会赚取6万元,若赔钱则损失5万元.
18.求袁先生2016年上半年同时投资甲、乙两只股票赚钱的概率;
19.试求袁先生2016年上半年同时投资甲、乙两只股票的总收益的分布列和数学期望.
分值: 12分
查看题目解析 >
1
抛物线C的方程为,过抛物线C上一点P(x0,y0)(x 0≠0)作斜率为k1,k2的两条直线分别交抛物线C于A(x1,y1),B(x2,y2)两点(P,A,B三点互不相同),且满足
.
24.求抛物线C的焦点坐标和准线方程;
25.设直线AB上一点M,满足,证明线段PM的中点在y轴上;
26.当=1时,若点P的坐标为(1,-1),求∠PAB为钝角时点A的纵坐标
的取值范围.
分值: 13分
查看题目解析 >
- 真题试卷
- 模拟试卷
- 预测试卷