给出下列三个命题:
①“a>b”是“3a>3b”的充分不必要条件;
②“α>β”是“cosα<cosβ”的必要不充分条件;
③“a0”是“函数f(x) x3+ax2(x∈R)为奇函数”的充要条件.
其中正确命题的序号为 ▲ .
B.[选修42:矩阵与变换](本小题满分10分)
在平面直角坐标系xOy中,已知点A(0,0),B(2,0),C(1,2),矩阵,点A,B,C在矩阵M对应的变换作用下得到的点分别为
,
,
,求△
的面积.
C.[选修44:坐标系与参数方程](本小题满分10分)
在平面直角坐标系xOy中,曲线C的参数方程为(
为参数,r为常数,r>0).以原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为
.若直线l与曲线C交于A,B两点,且
,求r的值.
【必做题】第25、26题,每小题10分,共计20分.请在答题卡指定区域内作答,解答时应写出
文字说明、证明过程或演算步骤.
(本小题满分10分)
如图,正四棱柱ABCDA1B1C1D1中,.
(1)求与面
所成角的正弦值;
(2)点在侧棱
上,若二面角EBDC1的余弦值为
,
求
的值.
(本小题满分10分)
袋中共有8个球,其中有3个白球,5个黑球,这些球除颜色外完全相同.从袋中随机取出一球,如果取出白球,则把它放回袋中;如果取出黑球,则该黑球不再放回,并且另补一个白球放入袋中.重复上述过程n次后,袋中白球的个数记为Xn.
(1)求随机变量X2的概率分布及数学期望E(X2);
(2)求随机变量Xn的数学期望E(Xn)关于n的表达式.
(本小题满分14分)
如图,在三棱柱ABCA1B1C1中,B1C⊥AB,侧面BCC1B1为菱形.
(1)求证:平面ABC1⊥平面BCC1B1;
(2)如果点D,E分别为A1C1,BB1的中点,
求证:DE∥平面ABC1.
(本小题满分14分)
如图,在平面直角坐标系xOy中,椭圆(a>b>0)的两焦点分别为F1(
,0),F2(
,0),且经过点(
,
).
(1)求椭圆的方程及离心率;
(2)设点B,C,D是椭圆上不同于椭圆顶点的三点,点B与点D关于原点O对称.设直线CD,CB,OB,OC的斜率分别为k1,k2,k3,k4,且k1k2k3k4.
①求k1k2的值;
②求OB2+OC2的值.
(本小题满分16分)
为丰富市民的文化生活,市政府计划在一块半径为200 m,圆心角为120°的扇形地上建造市民广场.规划设计如图:内接梯形ABCD区域为运动休闲区,其中A,B分别在半径OP,OQ上,C,D在圆弧上,CD∥AB;△OAB区域为文化展示区,AB长为
m;其余空地为绿化区域,且CD长不得超过200 m.
(1)试确定A,B的位置,使△OAB的周长最大?
(2)当△OAB的周长最大时,设∠DOC=,试将运动休闲
区ABCD的面积S表示为的函数,并求出S的最大值.
(本小题满分16分)
已知数列{an},{bn}中,a1=1,,n∈N,数列{bn}的前n项和为Sn.
(1)若,求Sn;
(2)是否存在等比数列{an},使对任意n∈N*恒成立?若存在,求出所有满足条件的数列{an}的通项公式;若不存在,说明理由;
(3)若a1≤a2≤…≤an≤…,求证:0≤Sn<2.
(本小题满分16分)
已知函数(a∈R).
(1)若a=2,求函数在(1,e2)上的零点个数(e为自然对数的底数);
(2)若恰有一个零点,求a的取值集合;
(3)若有两零点x1,x2(x1<x2),求证:2<x1+x2<
1.
- 真题试卷
- 模拟试卷
- 预测试卷