- 真题试卷
- 模拟试卷
- 预测试卷
2.设,
,
,则( )
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
4.已知为等差数列
的前n项的和,
,
,则
的值为( )
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
5.若满足约束条件
,则目标函数
的最大值是 ( )
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
6.设是三条不同的直线,
是三个不同的平面,则下列命题不正确的是( )
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
9.偶函数满足
=
,且在
时,
,则关于
的方程
,在
上解的个数是( )
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
1.已知集合M={0,1,2},N={x|x=2a,a∈M},则集合M∩N等于( )
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
3.在△ABC中,“”是“
”的 ( )
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
8.设有一几何体的三视图如下,则该几何体体积为( )
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
10.甲.乙.丙三人一起玩“剪刀.石头.布”的游戏.每一局甲.乙.丙同时出“剪刀.石头.布”中的一种手势,且是相互独立的.设在一局中甲赢的人数为,则随机变量
的数学期望
的值为( )
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
7.设是一个三次函数,
为其导函数,下图是函数
的图像的一部分,则
的极大值与极小值分别为( )
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
11.在的展开式中含
项的系数为_______。
正确答案
1008
解析
解析已在路上飞奔,马上就到!
知识点
15.下图表示了一个由区间(0,1)到实数集R的映射过程:区间(0,1)中的实数m对应数轴上的点M,如图1;将线段AB围成一个圆,使两端点A.B恰好重合,如图2;再将这个圆放在平面直角坐标系中,使其圆心在y轴上,点A的坐标为(0,1),如图3。对于图3中直线AM与x轴交于点N(n ,0),则 m的象就是n,记作,
下列说法中正确的是___________.(填出所有正确命题的序号)
①;
②是奇函数;
③在定义域上单调递增;
④的图象关于点
对称;
⑤的图象关于直线
对称;
⑥的最小正周期为1;
⑦的最大值为1。
正确答案
①③④
解析
解析已在路上飞奔,马上就到!
知识点
13.已知定义在R上的函数满足:①
②当
时,
;③对于任意的实数
均有
。则
______.
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
14.不等式对一切
成立,则实数
的取值范围为___________.
正确答案
或
.
解析
解析已在路上飞奔,马上就到!
知识点
12.已知数列的通项公式是
,将数列中各项进行如下分组:第1组1个数(
),第2 组2个数(
)第3组3个数(
),依次类推,……,则第16组的第10个数是______。
正确答案
47
解析
解析已在路上飞奔,马上就到!
知识点
21.已知函数在
处取得极值.
(1)求实数的值;
(2)若关于的方程,
在区间[0,2]上恰有两个不同的实数根,求实数
的取值范围;
(3)证明:对任意的正整数n,不等式都成立。
正确答案
(3)略
解析
解析已在路上飞奔,马上就到!
知识点
20.已知以原点O为中心的椭圆,它的短轴长为,右焦点
(c>0),它的长轴长为2a(a>c>0),直线
与x轴相交于点A,
,过点A的直线与椭圆相交于P.Q两点。
(Ⅰ)求椭圆的方程和离心率;
(Ⅱ)若,求直线PQ的方程;
(Ⅲ)设,过点P且平行于直线
的直线与椭圆相交于另一点M,证明:
。
正确答案
(Ⅰ)解:由题意,可知椭圆的方程为.
由已知得
解得,c=2,
所以椭圆的方程为,离心率
.
(Ⅱ)解:由(1)可得A(3,0).设直线PQ的方程为y=k(x-3).
联立方程组,得(3k2+1)x2-18k2x+27k2-6=0,
依题意△=12(2-3k2)>0,得.
设P(x1,y1),Q(x2,y2),则
, ①
. ②
由直线PQ的方程得为y1=k(x1-3),y2=k(x2-3),于是,
y1y2=k2(x1-3) (x2-3)= k2[x1x2-3(x1+ x2)+9]. ③
∵,∴x1x2+y1y2=0. ④
由①②③④得5k2=1,从而.
所以直线PQ的方程为或
.
(理科做)
(Ⅲ)证明:∵P(x1,y1),Q(x2,y2), A(3,0),
∴,
.由已知得方程组
,注意λ>1,解得
,
因为F(2,0), M(x1,-y1),故
.
而,所以
.
解析
解析已在路上飞奔,马上就到!
知识点
16.已知函数.
(Ⅰ)求函数的单调区间和最小正周期;
(Ⅱ)求函数上的最大值和最小值。
正确答案
(Ⅰ)增区间;减区间
;T=
(Ⅱ)最大值;最小值 —2
解析
解析已在路上飞奔,马上就到!
知识点
19.因发生意外交通事故,一辆货车上的某种液体泄露到一鱼塘中。为治理污染,根据环保部门的建议,现决定在鱼塘中投放一种可与污染液体发生化学反应的药剂。已知每投放
个单位的药剂,它在水中释放的浓度y(克/升)随着时间(天)变化的函数关系式近似为
,其中
。若多次投放,则某一时刻水中的药剂浓度为每次投放的药剂在相应时刻所释放的浓度之和。根据经验,当水中药剂的浓度不低于4(克/升)时,它才能起到有效的治污的作用。
(1)若一次投放4个单位的药剂,则有效治污的时间可达几天?
(2)若因材料紧张,第一次只能投放2个单位的药剂,6天后再投放个单位的药剂,要使接下来的4天中能够持续有效治污,试求
的最小值(精确到0.1,参考数据:
取1.4)。
正确答案
(1)因为 ,所以
,
①当时,由
,解得
,所以此时
。
②当时,由
,解得
,所以此时
。
综合得,,即,若一次投放4个单位的制剂,则有效治污时间可达8天。
(2) 当时,
,
由题意知,对于
恒成立。
因为,而
,所以
,
故当且仅当时,
有最小值为
,
令,解得
,所以
的最小值为
。
又,所以
的最小值约为1.6。
解析
解析已在路上飞奔,马上就到!
知识点
18.已知数列各项均为正数,其前n项和为
,点
在曲线
上。
(Ⅰ)求数列的通项公式;
(Ⅱ)设数列满足
,令
,求数列的前n项和
。
正确答案
(Ⅰ)由题意得:,从而
,
所以,即
。
所以,又因为
,所以
,
从而:。由于
得
。
故数列是以1为首项,2为公差的等差数列,通项公式为:
(Ⅱ)由(Ⅰ)知,,又
,所以
容易得到:又
所以:是以2为首项,2为公比的等比数列。
即:
所以:。
有:,
令……………………①
则…………………②
①-②得:
所以
解析
解析已在路上飞奔,马上就到!
知识点
17.设函数,且
曲线斜率最小的切线与直线
平行.
(1)求的值;
(2)求函数的单调区间。
正确答案
解:(1)的定义域为R
所以,由条件得
,
解得或
(舍)所以
(2)因为,所以
,
,解得
,
所以当时,
,
当时,
,
所以的单调增区间是
和(
),减区间是(-1,3)
解析
解析已在路上飞奔,马上就到!