选做题(14 ~ 15题,只能从中选做一题)
14. (坐标系与参数方程选做题)
直线与直线
平行,则直线
的斜率为________.
15.(几何证明选讲选做题)
如图,在△ABC中,AB=AC,以BC为直径的半圆O与边AB相交于点D,切线DE⊥AC,垂足为点E.则
_______________.
13. 设M1(0,0),M2(1,0),以M1为圆心,| M1 M2 | 为半径作圆交x轴于点M3 (不同于M2),记作⊙M1;以M2为圆心,| M2 M3 | 为半径作圆交x轴于点M4 (不同于M3),记作⊙M2;……;
以Mn为圆心,| Mn Mn+1 | 为半径作圆交x轴于点Mn+2 (不同于Mn+1),记作⊙Mn;……
当n∈N*时,过原点作倾斜角为30°的直线与⊙Mn交于An,Bn.考察下列论断:
当n=1时,| A1B1 |=2;
当n=2时,| A2B2 |=;
当n=3时,| A3B3 |=;
当n=4时,| A4B4 |=;
……
由以上论断推测一个一般的结论:对于n∈N*,| AnBn |=___________.
16.若的图像与直线
相切,并且切点横坐标依次成公差为
的等差数列.
(1)求和
的值;
(2)在⊿ABC中,a、b、c分别是∠A、∠B、∠C的对边。若是函数
图象的一个对称中心,且a=4,求⊿ABC外接圆的面积。
17. 某地农民种植A种蔬菜,每亩每年生产成本为7000元,A种蔬菜每亩产量及价格受天气、市场双重影响,预计明年雨水正常的概率为,雨水偏少的概率为
. 若雨水正常,A种蔬菜每亩产量为2000公斤,单价为6元/公斤的概率为
,单价为3元/公斤的概率为
; 若雨水偏少,A种蔬菜每亩产量为1500公斤,单价为6元/公斤的概率为
,单价为3元/公斤的概率为
.
(1)计算明年农民种植A种蔬菜不亏本的概率;
(2)在政府引导下,计划明年采取“公司加农户,订单农业”的生产模式,某公司未来不增加农民生产成本,给农民投资建立大棚,建立大棚后,产量不受天气影响,因此每亩产量为2500公斤,农民生产的A种蔬菜全部由公司收购,为保证农民的每亩预期收入增加1000元,收购价格至少为多少?
18.如图,已知△ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,DC⊥平面ABC,AB=2,tan∠EAB=
(1)证明:平面ACD⊥平面ADE;
(2)当 AC=x时, V(x)表示三棱锥A-CBE的体积,当V(x)取得最大值时,求直线AD与平面ACE所成角的正弦值。
21.设二次函数,对任意实数
,有
恒成立;数列
满足
.
(1)求函数的解析式和值域;
(2)试写出一个区间,使得当
时,数列
在这个区间上是递增数列,
并说明理由;
(3)已知,是否存在非零整数
,使得对任意
,都有
恒成立,若存在,求之;若不存在,说明理由.
19.已知:函数在点(0,
)处的切线与x-y-1=0平行, 且g(2)=
,若
为g(x)的导函数,设函数
.
(1)求、
的值及函数
的解析式;
(2)如果关于的方程
有三个相异的实数根,求实数
的取值范围.
20.已知椭圆和圆
,过椭圆上一点
引圆
的两条切线,切点分别为
.
(1)(ⅰ)若圆过椭圆的两个焦点,求椭圆的离心率
的值;
(ⅱ)若椭圆上存在点,使得
,求椭圆离心率
的取值范围;
(2)设直线与
轴、
轴分别交于点
,问当点P在椭圆上运动时,
是否为定值?请证明你的结论.
- 真题试卷
- 模拟试卷
- 预测试卷