6.已知函数f(x)=cosxsinx(x∈R),给出下列四个命题( )
①若f(x1)=﹣f(x2),则x1=﹣x2;
②f(x)的最小正周期是2π;
③f(x)在区间[﹣,
]上是增函数;
④f(x)的图象关于直线x=对称.
15.对一个各边不等的凸五边形的各边染色,每条边可以染红、黄、蓝三种颜色中的一种,但是不允许相邻的边有相同的颜色,则不同的染色方法共有____________种(用数字作答)
18.如图边长为2的正方形花园的一角是以A为中心,1为半径的扇形水池.现需在其余部分设计一个矩形草坪PNCQ,其中P是水池边上任意一点,点N.Q分别在边BC和CD上,设∠PAB为θ.
(I)用θ表示矩形草坪PNCQ的面积,并求其最小值;
(II)求点P到边BC和AB距离之比的最小值.
19.已知圆M:(x+1)2+y2=8,定点N(1,0),点P为圆M上的动点,若Q在NP上,点G在MP上,且满足.
(I)求点G的轨迹C的方程;
(II)直线l过点P(0,2)且与曲线C相交于A.B两点,当△AOB面积取得最大值时,求直线l的方程.
20.如图,以原点O为顶点,以y轴为对称轴的抛物线E的焦点为F(0,1),点M是直线l:y=m(m<0)上任意一点,过点M引抛物线E的两条切线分别交x轴于点S,T,切点分别为B,A.
(I)求抛物线E的方程;
(Ⅱ)求证:点S,T在以FM为直径的圆上;
(Ⅲ)当点M在直线l上移动时,直线AB恒过焦点F,求m的值.
21.已知二次函数g(x)对任意实数x不等式x﹣1≤g(x)≤x2﹣x恒成立,且g(﹣1)=0,令.
(I)求g(x)的表达式;
(II)若∃x>0使f(x)≤0成立,求实数m的取值范围;
(III)设1<m≤e,H(x)=f(x)﹣(m+1)x,证明:对∀x1,x2∈[1,m],恒有|H(x1)﹣H(x2)|<1.
- 真题试卷
- 模拟试卷
- 预测试卷