单选题
本大题共12小题,每小题5分,共60分。在每小题给出的4个选项中,有且只有一项是符合题目要求。
1
8.某校高三年级有男生220人,学籍编号1,2,…,220;女生380人,学籍编号221,222,…,600.为了解学生学习的心理状态,按学籍编号采用系统抽样的方法从这600名学生中抽取10人进行问卷调查(第一组采用简单随机抽样,抽到的号码为10),然后再从这10位学生中随机抽取3人座谈,则3人中既有男生又有女生的概率是( )
分值: 5分
查看题目解析 >
简答题(综合题)
本大题共80分。简答应写出文字说明、证明过程或演算步骤。
1
为了响应厦门市政府“低碳生活,绿色出行”的号召,思明区委文明办率先全市发起“少开一天车,呵护厦门蓝”绿色出行活动,“从今天开始,从我做起,力争每周至少一天不开车,上下班或公务活动带头选择步行、骑车或乘坐公交车,鼓励拼车……”铿锵有力的话语,传递了低碳生活、绿色出行的理念。某机构随机调查了本市500名成年市民某月的骑车次数,统计如下:
联合国世界卫生组织于2013年确定新的年龄分段:44岁及以下为青年人,45岁至59岁为中年人,60岁及以上为老年人.记本市一个年满18岁的青年人月骑车的平均次数为.以样本估计总体.
19.估计的值;
20.在本市老年人或中年人中随机访问3位,其中月骑车次数超过的人数记为
,求
的分布列与数学期望.
分值: 12分
查看题目解析 >
1
已知椭圆,动圆
:
(圆心
为椭圆
上异于左右顶点的任意一点),过原点
作两条射线与圆
相切,分别交椭圆于
,
两点,且切线长的最小值为
.
25.求椭圆的方程;
26.求证:的面积为定值.
分值: 12分
查看题目解析 >
1
在直角坐标系中,曲线
:
(
为参数).以
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
,直线
的极坐标方程为
.
27.求曲线的极坐标方程与直线
的直角坐标方程;
28.若直线与
,
在第一象限分别交于
,
两点,
为
上的动点,
求面积的最大值.
分值: 10分
查看题目解析 >
- 真题试卷
- 模拟试卷
- 预测试卷