4.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为
14.已知椭圆,双曲线
.若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为__________;双曲线N的离心率为__________.
17.(本小题12分)
电影公司随机收集了电影的有关数据,经分类整理得到下表:
好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.
假设所有电影是否获得好评相互独立.
(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;
(Ⅱ)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率;
(Ⅲ)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等,用“”表示第k类电影得到人们喜欢,“
”表示第k类电影没有得到人们喜欢(k=1,2,3,4,5,6).写出方差
,
,
,
,
,
的大小关系.
16.(本小题14分)
如图,在三棱柱ABC−中,
平面ABC,D,E,F,G分别为
,AC,
,
的中点,AB=BC=
,AC=
=2.
(Ⅰ)求证:AC⊥平面BEF;
(Ⅱ)求二面角B−CD−C1的余弦值;
(Ⅲ)证明:直线FG与平面BCD相交.
19.(本小题14分)
已知抛物线C:=2px经过点
(1,2).过点Q(0,1)的直线l与抛物线C有两个不同的交点A,B,且直线PA交y轴于M,直线PB交y轴于N.
(Ⅰ)求直线l的斜率的取值范围;
(Ⅱ)设O为原点,,
,求证:
为定值.
20.(本小题14分)
设n为正整数,集合A=.对于集合A中的任意元素
和
,记
M()=
.
(Ⅰ)当n=3时,若,
,求M(
)和M(
)的值;
(Ⅱ)当n=4时,设B是A的子集,且满足:对于B中的任意元素,当
相同时,M(
)是奇数;当
不同时,M(
)是偶数.求集合B中元素个数的最大值;
(Ⅲ)给定不小于2的n,设B是A的子集,且满足:对于B中的任意两个不同的元素,M(
)=0.写出一个集合B,使其元素个数最多,并说明理由.
- 真题试卷
- 模拟试卷
- 预测试卷