- 真题试卷
- 模拟试卷
- 预测试卷
2.在复平面内,复数的共轭复数对应的点位于
正确答案
5.某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为
正确答案
8.设集合则
正确答案
7.在平面直角坐标系中,记d为点P(cosθ,sinθ)到直线的距离,当θ,m变化时,d的最大值为
正确答案
4.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为
正确答案
1.已知集合A={x||x|<2},B={–2,0,1,2},则AB=
正确答案
3.执行如图所示的程序框图,输出的s值为
正确答案
6.设a,b均为单位向量,则“”是“a⊥b”的
正确答案
9.设是等差数列,且a1=3,a2+a5=36,则的通项公式为__________.
正确答案
10.在极坐标系中,直线与圆相切,则a=__________.
正确答案
11.设函数f(x)=,若对任意的实数x都成立,则ω的最小值为__________.
正确答案
12.若x,y满足x+1≤y≤2x,则2y−x的最小值是__________.
正确答案
3
13.能说明“若f(x)>f(0)对任意的x∈(0,2]都成立,则f(x)在[0,2]上是增函数”为假命题的一个函数是__________.
正确答案
=sinx(答案不唯一)
14.已知椭圆,双曲线.若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为__________;双曲线N的离心率为__________.
正确答案
18.(本小题13分)
设函数=[].
(Ⅰ)若曲线y= f(x)在点(1,)处的切线与轴平行,求a;
(Ⅱ)若在x=2处取得极小值,求a的取值范围.
正确答案
(Ⅰ)因为=[],
所以f ′(x)=[2ax–(4a+1)]ex+[ax2–(4a+1)x+4a+3]ex
=[ax2–(2a+1)x+2]ex.
f ′(1)=(1–a)e.
由题设知f ′(1)=0,即(1–a)e=0,解得a=1.
此时f (1)=3e≠0.
所以a的值为1.
(Ⅱ)由(Ⅰ)得f ′(x)=[ax2–(2a+1)x+2]ex=(ax–1)(x–2)ex.
若a>,则当x∈(,2)时,f ′(x)<0;
当x∈(2,+∞)时,f ′(x)>0.
所以f (x)在x=2处取得极小值.
若a≤,则当x∈(0,2)时,x–2<0,ax–1≤x–1<0,
所以f ′(x)>0.
所以2不是f (x)的极小值点.
综上可知,a的取值范围是(,+∞).
17.(本小题12分)
电影公司随机收集了电影的有关数据,经分类整理得到下表:
好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.
假设所有电影是否获得好评相互独立.
(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;
(Ⅱ)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率;
(Ⅲ)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等,用“”表示第k类电影得到人们喜欢,“”表示第k类电影没有得到人们喜欢(k=1,2,3,4,5,6).写出方差,,,,,的大小关系.
正确答案
(Ⅰ)由题意知,样本中电影的总部数是140+50+300+200+800+510=2000,
第四类电影中获得好评的电影部数是200×0.25=50.
故所求概率为
(Ⅱ)设事件A为“从第四类电影中随机选出的电影获得好评”,
事件B为“从第五类电影中随机选出的电影获得好评”.
故所求概率为P()=P()+P()
=P(A)(1–P(B))+(1–P(A))P(B).
由题意知:P(A)估计为0.25,P(B)估计为0.2.
故所求概率估计为0.25×0.8+0.75×0.2=0.35.
(Ⅲ)>>=>>.
15.(本小题13分)
在△ABC中,a=7,b=8,cosB=–.
(Ⅰ)求∠A;
(Ⅱ)求AC边上的高.
正确答案
(Ⅰ)在△ABC中,∵cosB=–,∴B∈(,π),∴sinB=.
由正弦定理得=,∴sinA=.
∵B∈(,π),∴A∈(0,),∴∠A=.
(Ⅱ)在△ABC中,∵sinC=sin(A+B)=sinAcosB+sinBcosA==.
如图所示,在△ABC中,∵sinC=,∴h==,
∴AC边上的高为.
16.(本小题14分)
如图,在三棱柱ABC−中,平面ABC,D,E,F,G分别为,AC,,的中点,AB=BC=,AC==2.
(Ⅰ)求证:AC⊥平面BEF;
(Ⅱ)求二面角B−CD−C1的余弦值;
(Ⅲ)证明:直线FG与平面BCD相交.
正确答案
(Ⅰ)在三棱柱ABC-A1B1C1中,
∵CC1⊥平面ABC,
∴四边形A1ACC1为矩形.
又E,F分别为AC,A1C1的中点,
∴AC⊥EF.
∵AB=BC.
∴AC⊥BE,
∴AC⊥平面BEF.
(Ⅱ)由(I)知AC⊥EF,AC⊥BE,EF∥CC1.
又CC1⊥平面ABC,∴EF⊥平面ABC.
∵BE平面ABC,∴EF⊥BE.
如图建立空间直角坐标系E-xyz.
由题意得B(0,2,0),C(-1,0,0),D(1,0,1),F(0,0,2),G(0,2,1).
∴,
设平面BCD的法向量为,
∴,∴,
令a=2,则b=-1,c=-4,
∴平面BCD的法向量,
又∵平面CDC1的法向量为,
∴.
由图可得二面角B-CD-C1为钝角,所以二面角B-CD-C1的余弦值为.
(Ⅲ)由(Ⅱ)知平面BCD的法向量为,∵G(0,2,1),F(0,0,2),
∴,∴,∴与不垂直,
∴GF与平面BCD不平行且不在平面BCD内,∴GF与平面BCD相交.
19.(本小题14分)
已知抛物线C:=2px经过点(1,2).过点Q(0,1)的直线l与抛物线C有两个不同的交点A,B,且直线PA交y轴于M,直线PB交y轴于N.
(Ⅰ)求直线l的斜率的取值范围;
(Ⅱ)设O为原点,,,求证:为定值.
正确答案
(Ⅰ)因为抛物线y2=2px经过点P(1,2),
所以4=2p,解得p=2,所以抛物线的方程为y2=4x.
由题意可知直线l的斜率存在且不为0,
设直线l的方程为y=kx+1(k≠0).
由得.
依题意,解得k<0或0<k<1.
又PA,PB与y轴相交,故直线l不过点(1,-2).从而k≠-3.
所以直线l斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1).
(Ⅱ)设A(x1,y1),B(x2,y2).
由(I)知,.
直线PA的方程为.
令x=0,得点M的纵坐标为.
同理得点N的纵坐标为.
由,得,.
所以.
所以为定值.
20.(本小题14分)
设n为正整数,集合A=.对于集合A中的任意元素和,记
M()=.
(Ⅰ)当n=3时,若,,求M()和M()的值;
(Ⅱ)当n=4时,设B是A的子集,且满足:对于B中的任意元素,当相同时,M()是奇数;当不同时,M()是偶数.求集合B中元素个数的最大值;
(Ⅲ)给定不小于2的n,设B是A的子集,且满足:对于B中的任意两个不同的元素,M()=0.写出一个集合B,使其元素个数最多,并说明理由.
正确答案
(Ⅰ)因为α=(1,1,0),β=(0,1,1),所以
M(α,α)=[(1+1−|1−1|)+(1+1−|1−1|)+(0+0−|0−0|)]=2,
M(α,β)=[(1+0–|1−0|)+(1+1–|1–1|)+(0+1–|0–1|)]=1.
(Ⅱ)设α=(x1,x 2,x3,x4)∈B,则M(α,α)= x1+x2+x3+x4.
由题意知x1,x 2,x3,x4∈{0,1},且M(α,α)为奇数,
所以x1,x 2,x3,x4中1的个数为1或3.
所以B{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),(0,1,1,1),(1,0,1,1),(1,1,0,1),(1,1,1,0)}.
将上述集合中的元素分成如下四组:
(1,0,0,0),(1,1,1,0);(0,1,0,0),(1,1,0,1);(0,0,1,0),(1,0,1,1);(0,0,0,1),(0,1,1,1).
经验证,对于每组中两个元素α,β,均有M(α,β)=1.
所以每组中的两个元素不可能同时是集合B的元素.
所以集合B中元素的个数不超过4.
又集合{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)}满足条件,
所以集合B中元素个数的最大值为4.
(Ⅲ)设Sk={( x1,x 2,…,xn)|( x1,x 2,…,xn)∈A,xk =1,x1=x2=…=xk–1=0)}(k=1,2,…,n),
Sn+1={( x1,x 2,…,xn)| x1=x2=…=xn=0},
则A=S1∪S1∪…∪Sn+1.
对于Sk(k=1,2,…,n–1)中的不同元素α,β,经验证,M(α,β)≥1.
所以Sk(k=1,2 ,…,n–1)中的两个元素不可能同时是集合B的元素.
所以B中元素的个数不超过n+1.
取ek=( x1,x 2,…,xn)∈Sk且xk+1=…=xn=0(k=1,2,…,n–1).
令B=(e1,e2,…,en–1)∪Sn∪Sn+1,则集合B的元素个数为n+1,且满足条件.
故B是一个满足条件且元素个数最多的集合