单选题
本大题共12小题,每小题5分,共60分。在每小题给出的4个选项中,有且只有一项是符合题目要求。
1
宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.下图是源于其思想的一个程序框图,若输入的分别为5,2,则输出的
为( )
分值: 5分
查看题目解析 >
简答题(综合题)
本大题共70分。简答应写出文字说明、证明过程或演算步骤。
1
某大学志愿者协会有6名男同学,4名女同学.在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院.现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).
(1)求选出的3名同学是来自互不相同学院的概率;
(2)设为选出的3名同学中女同学的人数,求随机变量
的分布列和数学期望.
分值: 12分
查看题目解析 >
1
已知点为椭圆
的左焦点,且两焦点与短轴的一个顶点构成一个等边三角形,直线
与椭圆
有且仅有一个交点
.
(1)求椭圆的方程;
(2)设直线与
轴交于
,过点
的直线
与椭圆
交于不同的两点
.若
,求实数
的取值范围.
分值: 12分
查看题目解析 >
1
已知曲线的极坐标方程为
,直线
:
,直线
:
.以极点
为原点,极轴为
轴的正半轴建立平面直角坐标系.
(1)求直线,
的直角坐标方程以及曲线
的参数方程;
(2)已知直线与曲线
交于
,
两点,直线
与曲线
交于
,
两点,求
的面积.
分值: 10分
查看题目解析 >
- 真题试卷
- 模拟试卷
- 预测试卷