7.我国古代数学典籍《九章算术》“盈不足”中有一道问题:“今有垣高九尺,瓜生其上,蔓日长七寸;瓠生其下,蔓日长一尺,问几何日相逢?”现用程序框图描述,如图所示,则输出的结果n=( )
9.在四棱锥P﹣ABCD中,PA⊥底面ABCD,底面ABCD为正方形,PA=AB,该四棱锥被一平面截去一部分后,剩余部分的三视图如图,则剩余部分体积与原四棱锥体积的比值为( )
8.已知函数f(x)的定义域为D,若对于∀a,b,c∈D,f(a),f(b),f(c)分别为某个三角形的三边长,则称f(x)为“三角形函数”.给出下列四个函数:
①f(x)=lg(x+1)(x>0);
②f(x)=4﹣cosx;
③;
④
其中为“三角形函数”的个数是( )
11.我们把焦点相同,且离心率互为倒数的椭圆和双曲线称为一对“相关曲线”.已知F1,F2是一对相关曲线的焦点,P是椭圆和双曲线在第一象限的交点,当∠F1PF2=60°时,这一对相关曲线中椭圆的离心率为( )
已知数列{an}满足a1=4,an+1=qan+d(q,d为常数).
17.当q=1,d=2时,求a2017的值;
18.当q=3,d=﹣2时,记,Sn=b1+b2+b3+…+bn,证明:
.
2011年,国际数学协会正式宣布,将每年的3月14日设为国际数学节,来源是中国古代数学家祖冲之的圆周率.为庆祝该节日,某校举办的数学嘉年华活动中,设计了一个有奖闯关游戏,游戏分为两个环节.
第一环节“解锁”:给定6个密码,只有一个正确,参赛选手从6个密码中任选一个输入,每人最多可输三次,若密码正确,则解锁成功,该选手进入第二个环节,否则直接淘汰.
第二环节“闯关”:参赛选手按第一关、第二关、第三关的顺序依次闯关,若闯关成功,分别获得10个、20个、30个学豆的奖励,游戏还规定,当选手闯过一关后,可以选择带走相应的学豆,结束游戏,也可以选择继续闯下一关,若有任何一关没有闯关成功,则全部学豆归零,游戏结束.设选手甲能闯过第一关、第二关、第三关的概率分别为,选手选择继续闯关的概率均为
,且各关之间闯关成功与否互不影响.
19.求某参赛选手能进入第二环节的概率;
20.设选手甲在第二环节中所得学豆总数为X,求X的分布列和期望.
如图(1)所示,在直角梯形ABCD中,,E是AD的中点,O是AC与BE的交点.将△ABE沿BE折起到△A1BE的位置,如图(2)所示.
21.证明:CD⊥平面A1OC;
22.若平面A1BE⊥平面BCDE,求平面A1BC与平面A1CD所成锐二面角的余弦值.
已知抛物线C的顶点在坐标原点,焦点F在x轴的正半轴上,过点F的直线l与抛物线C相交于A、B两点,且满足.
23.求抛物线C的标准方程;
24.若点M在抛物线C的准线上运动,其纵坐标的取值范围是[﹣1,1],且,点N是以线段AB为直径的圆与抛物线C的准线的一个公共点,求点N的纵坐标的取值范围.
已知函数,(e为自然对数的底数,a,b∈R),若f(x)在x=0处取得极值,且x﹣ey=0是曲线y=f(x)的切线.
25.求a,b的值;
26.用min{m,n}表示m,n中的最小值,设函数,若函数h(x)=g(x)﹣cx2为增函数,求实数c的取值范围.
极坐标系与直角坐标系xOy取相同的长度单位,以原点O为极点,以x轴正半轴为极轴.已知直线l的参数方程为为参数).曲线C的极坐标方程为
.
27.求直线l的倾斜角和曲线C的直角坐标方程;
28.设直线C与曲线C交于A,B两点,与x轴的交点为M,求的值.
- 真题试卷
- 模拟试卷
- 预测试卷