15.某班班会准备从甲、乙等7名学生中选派4名学生发言,要求甲、乙两名同学至少有一人参加,且若甲、乙同时参加,则他们发言时不能相邻,那么不同的发言顺序的种数为__________.
请考生在第22,23,24题中任选一题做答,如果多做,则按所做的第一题计分.
22. 如图,已知⊙O和⊙M相交于A、B两点,AD为⊙M的直径,直线BD交⊙O于点C,点G为弧BD中点,连结AG分别交⊙O、BD于点E、F连结CE.
(1)求证:;
(2)求证:
23. 在直角坐标系中,曲线C的参数方程为
为参数),曲线P在以该直角坐标系的原点O的为极点,x轴的正半轴为极轴的极坐标系下的方程为
.
(Ⅰ)求曲线C的普通方程和曲线P的直角坐标方程;
(Ⅱ)设曲线C和曲线P的交点为A、B,求|AB|.
24. 设函数.
(Ⅰ)求不等式的解集;
(Ⅱ),使
,求实数的取值范围.
18.现对某市工薪阶层关于“楼市限购令”的态度进行调查,随机抽调了50人,他们月收入的频数分布及对 “楼市限购令”赞成人数如下表.
(Ⅰ)由以上统计数据填下面2乘2列联表并问是否有99%的把握认为“月收入以5500为分界点对“楼市限购令” 的态度有差异;
(Ⅱ)若对月收入在[15,25) ,[25,35)的被调查人中各随机选取两人进行追踪调查,记选中的4人中不赞成“楼市限购令”人数为 ,求随机变量
的分布列及数学期望.
参考数据:
21.已知函数.
(1)当时,求
在区间
上的最大值和最小值;
(2)如果函数,
,
,在公共定义域D上,满足
,那么就称为
为
的“活动函数”.已知函数
,
.若在区间
上,函数
是
,
的“活动函数”,求
的取值范围。
20.在平面直角坐标系中,已知点,向量
,点B为直线
上的动点,点C满足
,点M满足
.
(1)试求动点M的轨迹E的方程;
(2)设点P是轨迹E上的动点,点R、N在轴上,圆
内切于
,求
的面积的最小值。
- 真题试卷
- 模拟试卷
- 预测试卷