16.在四棱锥P-ABCD中,PC⊥平面ABCD,DC∥AB,DC=2,AB=4,BC=2,∠CBA=30°.
(1)求证:AC⊥PB;
(2)若PC=2,点M是棱PB上的点,且CM∥平面PAD,求BM的长。
17. 某油库的设计容量为30万吨,年初储量为10万吨,从年初起计划每月购进石油 万吨,以满足区域内和区域外的需求,若区域内每月用石油1万吨,区域外前
个月的需求量
(万吨)与
的函数关系为
,并且前4个月,区域外的需求量为20万吨.
(1)试写出第个月石油调出后,油库内储油量
(万吨)与
的函数关系式;
(2)要使16个月内每月按计划购进石油之后,油库总能满足区域内和区域外的需求,且每月石油调出后,油库的石油剩余量不超过油库的容量,试确定的取值范围.
23.为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加。现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名。从这8名运动员中随机选择4人参加比赛.
(1)设A为事件“选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会”求事件A发生的概率;
(2)设X为选出的4人中种子选手的人数,求随机变量X的分布列和数学期望.
18. 平面直角坐标系中,已知椭圆
的离心率为
,左、右焦点分别是
,以
为圆心以3为半径的圆与以
为圆心以1为半径的圆相交,且交点在椭圆
上.
(1)求椭圆的方程;
(2)过椭圆上一动点
的直线
,过F2与x轴垂直的直线记为
,右准线记为
;
①设直线与直线
相交于点M,直线
与直线
相交于点N,证明
恒为定值,并求此定值。
②若连接并延长与直线
相交于点Q,椭圆
的右顶点A,设直线PA的斜率为
,直线QA的斜率为
,求
的取值范围.
19. 设数列的前
项和
,
,
,且当
时,
.
(1)求证:数列是等比数列,并求数列
的通项公式;
(2)令,记数列
的前
项和为
.设
是整数,问是否存在正整数
,使等式
成立?若存在,求出
和相应的
值;若不存在,说明理由.
22.(2) [选修4-4:坐标系与参数方程]
在直角坐标系中,曲线
(
为参数,
),其中
,在以
为极点,
轴正半轴为极轴的极坐标系中,曲线
,曲线
.
(1)求与
交点的直角坐标;
(2)若与
相交于点
,
与
相交于点
,求
的最大值.
24.若抛物线C的顶点在坐标原点O,其图象关于x轴对称,且经过点M(2,2).
(1)求抛物线C的方程;
(2)过点M作抛物线C的两条弦MA,MB,设MA,MB所在直线的斜率分别为,
当变化且满足
时,证明直线AB恒过定点,并求出该定点坐标.
- 真题试卷
- 模拟试卷
- 预测试卷