- 真题试卷
- 模拟试卷
- 预测试卷
2.设集合,则满足条件
的集合P的个数是( )个
正确答案
4
解析
解析已在路上飞奔,马上就到!
知识点
3.设A,B是轴上的两点,点P的横坐标为2,且
,若直线PA的方程为
,则直线PB的方程是___________________
正确答案
.
解析
解析已在路上飞奔,马上就到!
知识点
4.设为平面上过点
的直线,
的斜率等可能地取1,
,-1,-
,用
表示坐标原点到
的距离,则随机变量
的数学期望
( )。
正确答案
9
解析
解析已在路上飞奔,马上就到!
知识点
7.已知为抛物线
上一点,设
到准线的距离为
,
到点
的距离为
,则
的最小值为________.
正确答案
4
解析
解析已在路上飞奔,马上就到!
知识点
9.矩阵变换式表示把点(x,y)变换为点
,设a,b∈R,若矩阵A=
把直线l:2x+y一7=0变换为另一直线
:9x+y一91=0,则a,+b的值分别为( )
正确答案
16
解析
解析已在路上飞奔,马上就到!
知识点
1.已知复数若
为实数,则实数m=( ).
正确答案
2
解析
解析已在路上飞奔,马上就到!
知识点
6.执行下边的程序框图,若,则输出的
( )。
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
5.在直角坐标系中圆的参数方程为
(
为参数),以原点
为极点,以
轴正半轴为极轴建立极坐标系,则圆
的圆心极坐标为________.
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
8.设表示不超过
的最大整数,则
的不等式
的解集是( )
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
11.一个正四棱柱形的密闭容器底部镶嵌了同底的正四棱锥形实心装饰快,容器内盛有升水时,水面恰好经过正四棱锥的顶点
。如果将容器倒置,水面也恰好过点
,有下列四个命题:
(1)任意摆放该容器,当水面静止时,水面都恰好经过点;
(2)正四棱锥的高等于正四棱柱的高的一半;
(3)若往容器内再注升水,则容器恰好能装满;
(4)将容器侧面水平放置时,水面也恰好过。
其中真命题的代号为( )。
正确答案
(3)(4)
解析
解析已在路上飞奔,马上就到!
知识点
12.等边三角形中,
在线段
上,且
,若
,则实数
的值是( )
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
13.设函数,方程f(x)=x+a有且只有两相不等实数根,则实a的取值范围为( )
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
14.已知△ABC三边a,b,c的长都是整数,且,如果b=m(m
N*),则这样的三角形共有( )个(用m表示).
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
10.一只蚂蚁在三边边长分别为3,4,5的三角形的边上爬行,某时刻该蚂蚁距离三角形的三个顶点的距离均超过的概率为( )
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
19.已知函数,
。
(1)求的最大值和最小值;
(2)若不等式在
上恒成立,求实数
的取值范围
正确答案
(1).
又,
,即
,
.
(2),
,
且
,
,即
的取值范围是
.
解析
解析已在路上飞奔,马上就到!
知识点
20.已知:正方体,
,E为棱
的中点。
(1) 求证:;
(2) 求证:平面
;
(3) 求三棱锥的体积
正确答案
(1)证明:连结,则
//
,
∵是正方形,∴
.∵
面
,∴
.
又,∴
面
.
∵面
,∴
,
∴.
(2)取的中点F,.则
∴四边形是平行四边形,且
.
∴面
.
(3)面
A 到面
的距离=C到面
的距离
解析
解析已在路上飞奔,马上就到!
知识点
21.设函数的反函数为
。
(1)若,求
的取值范围
;
(2)设,当
(
为(1)中所求)时函数
的图象与直线
有公共点,求实数
的取值范围。
正确答案
(1),
由,
解得
(2),
,
当时,
单调递增,
单调递增,
因此当时满足条件。
解析
解析已在路上飞奔,马上就到!
知识点
22.已知双曲线的左、右两个焦点为
,
,动点P满足|P
|+| P
|=4。
(1)求动点P的轨迹E的方程;
(2)设过的直线
交轨迹E于A、B两点,求以线段OA,OB 为邻边的平行四边形OAPB的顶点P的轨迹方程;
(3)设C(,0),若四边形CAGB为菱形(A、B意义同(2)),求
的取值范围。
正确答案
(1)双曲线的方程可化为,
则|F1F2| =2√3,
∴ |PF1|+|PF2|=4>|F1F2|=2√3,
∴ P点的轨迹E是以F1、F为焦点,长轴为4的椭圆
由 a=2,c=√3,∴ b=1;
∴ 所求轨迹方程为
(2)略
(3)略
解析
解析已在路上飞奔,马上就到!
知识点
23.已知以a为首项的数列满足:
(1)若0<≤6,求证:0<
≤6;
(2)若a,k∈N﹡,求使对任意正整数n都成立的k与a;
(3)若 (m∈N﹡),试求数列
的前4m+2项的和
正确答案
(1)当时,则
,当
时,则
,
故,所以当
时,总有
.
(2)①当时,
,故满足题意的
N*.
同理可得,当或4时,满足题意的
N*.
当或6时,满足题意的
N*.
②当时,
,故满足题意的k不存在.
③当时,由(1)知,满足题意的k不存在.
综上得:当时,满足题意的
N*;
当时,满足题意的
N*.
(3)由mN*,可得
,故
,
当时,
.
故且
.又
,
所以.
故 =4
=4
=.
解析
解析已在路上飞奔,马上就到!
知识点
15.在中,若
,则自然数
的值是( )
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
16.某商场在国庆黄金周的促销活动中,对10月2号9时至14时的销售额进行统计,其频率分布直方图如图1所示.已知9时至10时的销售额为2.5万元,则11时至12时的销售额为 ( )
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
17.设直线与球
有且只有一个公共点
,从直线
出发的两个半平面
、
截球
的两个截面圆的半径分别为
和
,二面角
的平面角为
,则球
的表面积为 ( )
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
18.点在直线
上,若存在过
的直线交抛物线
于
两点,且
,则称点
为“
点”,那么下列结论中正确的是 ( )
正确答案
解析
解析已在路上飞奔,马上就到!