• 理科数学 成都市2014年高三试卷
单选题 本大题共10小题,每小题5分,共50分。在每小题给出的4个选项中,有且只有一项是符合题目要求。
1

1.设集合则使M∩N=N成立的的值是(   )

A1

B0

C-1

D1或-1

分值: 5分 查看题目解析 >
1

2.复数为虚数单位)的共轭复数在复平面上对应的点的坐标是 (     )

A(1,1)

B(1,-1)

C(-1,1)

D(-1,-1)

分值: 5分 查看题目解析 >
1

3.已知函数(   )

A-4

B

C4

D6

分值: 5分 查看题目解析 >
1

4.函数的图像可能是(    )

A

B

C

D

分值: 5分 查看题目解析 >
1

5.实数满足条件,则的最小值为(    )

A16

B4

C1

D

分值: 5分 查看题目解析 >
1

6.下列说法中正确的是(    )

A”是“”必要条件

B命题“”的否定是“

C,使函数是奇函数

D是简单命题,若是真命题,则也是真命题

分值: 5分 查看题目解析 >
1

7.阅读程序框图,若输入m=4,n=6,则输出分别是(   )

A

B

C

D

分值: 5分 查看题目解析 >
1

9. 设三位数,若以为三条边的长可以构成一个等腰(含等边)三角形,则这样的三位数有(  )

A12种

B24种

C28种

D36种

分值: 5分 查看题目解析 >
1

8.设函数的图像关于直线对称,它的周期是,则(    )

A的图象过点

B的一个对称中心是

C上是减函数

D的图象向右平移个单位得到函数的图象

分值: 5分 查看题目解析 >
1

10. 定义在上的函数,且上恒成立,则关于的方程的根的个数叙述正确的是(       ).

A有两个

B有一个

C没有

D上述情况都有可能

分值: 5分 查看题目解析 >
填空题 本大题共5小题,每小题5分,共25分。把答案填写在题中横线上。
1

12.的系数是_________(用数字作答).

分值: 5分 查看题目解析 >
1

13. 在数列中,,则_________.

分值: 5分 查看题目解析 >
1

14.已知二次函数的值域为,则的最小值为_________.

分值: 5分 查看题目解析 >
1

11.已知向量满足,则 _________.

分值: 5分 查看题目解析 >
1

15. 已知是函数图象上的任意一点,该图象的两个端点, 点满足,(其中轴上的单位向量),若(为常数)在区间上恒成立,则称在区间上具有 “性质”。现有函数:

;        

;     

;    

则在区间上具有“性质”的函数为_________.

分值: 5分 查看题目解析 >
简答题(综合题) 本大题共75分。简答应写出文字说明、证明过程或演算步骤。
1

16.设是公差大于零的等差数列,已知

(Ⅰ)求的通项公式;

(Ⅱ)设是以函数的最小正周期为首项,以为公比的等比数列,求数列的前n项和

分值: 12分 查看题目解析 >
1

18.某高中为了推进新课程改革,满足不同层次学生的需求,决定从高一年级开始,在每周的周一、周三、周五的课外活动期间同时开设数学、物理、化学、生物和信息技术辅导讲座,每位有兴趣的同学可以在期间的任何一天参加任何一门科目的辅导讲座,也可以放弃任何一门科目的辅导讲座。(规定:各科达到预先设定的人数时称为满座,否则称为不满座)统计数据表明,各学科讲座各天的满座的概率如下表:

根据上表:

(1)求数学辅导讲座在周一、周三、周五都不满座的概率;

(2)设周三各辅导讲座满座的科目数为,求随机变量的分布列和数学期望.

分值: 12分 查看题目解析 >
1

19.已知直三棱柱的三视图如图所示,且的中点.

(Ⅰ)求证:∥平面

(Ⅱ)求二面角的余弦值;

(Ⅲ)试问线段上是否存在点,使 角?若存在,确定点位置,若不存在,说明理由.

分值: 12分 查看题目解析 >
1

20.已知

(Ⅰ)当时,判断的奇偶性,并说明理由;

(Ⅱ)当时,若,求的值;

(Ⅲ)若,且对任何不等式恒成立,求实数的取值范围.

分值: 13分 查看题目解析 >
1

21.已知函数

(Ⅰ)时,求处的切线方程;

(Ⅱ)若对任意的恒成立,求实数的取值范围;

(Ⅲ)当时,设函数,若,求证:

分值: 14分 查看题目解析 >
1

17. 已知 的内角A、B、C所对的边为, ,且所成角为

(Ⅰ)求角B的大小;

(Ⅱ)求的取值范围.

分值: 12分 查看题目解析 >
  • 上一题
  • 1/21
  • 下一题

点击 “立即下载”

即可下载本试卷,含解析哦

知道啦