已知双曲线(a>0,b>0)的左右焦点分别为F1,F2,过右焦点F2的直线交双曲线右支于A、B两点,连结AF1、BF1,若|AB|=|BF1|且
,则双曲线的离心率为( )
已知椭圆的两焦点与短轴的一个端点的连线构成等腰直角三角形,直线x+y+1=0与以椭圆C的上焦点为圆心,以椭圆的长半轴长为半径的圆相切.
(1)求椭圆C的方程;
(2)设P为椭圆C上一点,若过点M(0,2)的直线l与椭圆C相交于不同的两点S和T,满足(O为坐标原点),求实数t的取值范围.
康杰中学高三数学学习小组开展“学生语文成绩与外语成绩的关系”的课题研究,在全市高三年级学生中随机抽取100名同学的上学期期末语文和外语成绩,按优秀和不优秀分类得结果:语文和外语都优秀的有16人,语文成绩优秀但外语不优秀的有14人,外语成绩优秀但语文不优秀的有10人.
(1)根据以上信息,完成下面2×2列联表:
(2)能否判定在犯错误概率不超过0.001的前提下认为全市高三年级学生的“语文成绩与外语成绩有关系”?
(3)将上述调查所得到的频率视为概率,从全市高三年级学生成绩中,随机抽取3名学生的成绩,记抽取的3名学生成绩中语文、外语两科成绩至少有一科优秀的个数为X,求X的分布列和期望E(X).
附:
其中:n=a+b+c+d.
如图所示,该几何体是由一个直三棱柱ADE﹣BCF和一个正四棱锥P﹣ABCD组合而成,AD⊥AF,AE=AD=2.
(1)证明:平面PAD⊥平面ABFE;
(2)求正四棱锥P﹣ABCD的高h,使得二面角C﹣AF﹣P的余弦值是.
[选修4-4坐标系与参数方程]
在直角坐标系中,曲线C的参数方程为,(ϕ为参数),直线l的参数方程为
(t为参数).以原点为极点,x轴的正半轴为极轴建立极坐标系,点P的极坐标为
.
(Ⅰ)求点P的直角坐标,并求曲线C的普通方程;
(Ⅱ)设直线l与曲线C的两个交点为A,B,求|PA|+|PB|的值.
[选修4-5:不等式选讲]
设函数f(x)=|x﹣a
(1)当a=2时,解不等式f(x)≥4﹣|x﹣1|;
(2)若f(x)≤1的解集为[0,2], +
=a(m>0,n>0)求证:m+2n≥4.
已知函数f(x)=x2﹣ax(a≠0),g(x)=lnx,f(x)的图象在它与x轴异于原点的交点M处的切线为l1,g(x﹣1)的图象在它与x轴的交点N处的切线为l2,且l1与l2平行.
(1)求a的值;
(2)已知t∈R,求函数y=f(xg(x)+t)在x∈[1,e]上的最小值h(t);
(3)令F(x)=g(x)+g′(x),给定x1,x2∈(1,+∞),x1<x2,对于两个大于1的正数α,β,存在实数m满足:α=mx1+(1﹣m)x2,β=(1﹣m)x1+mx2,并且使得不等式|F(α)﹣F(β)|<|F(x1)﹣F(x2)|恒成立,求实数m的取值范围..
- 真题试卷
- 模拟试卷
- 预测试卷