• 理科数学 2017年高三第三次模拟考试
单选题 本大题共12小题,每小题5分,共60分。在每小题给出的4个选项中,有且只有一项是符合题目要求。
1

1.已知集合,则

A

B

C

D

分值: 5分 查看题目解析 >
1

2.已知向量,若实数满足,则

A5

B6

C7

D8

分值: 5分 查看题目解析 >
1

3.欧拉公式(为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数集,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”.根据欧拉公式可知,表示的复数在复平面中对应的点位于

A第一象限

B第二象限

C第三象限

D第四象限

分值: 5分 查看题目解析 >
1

4.已知命题函数是奇函数,命题函数在区间上单调递增.则下列命题中为真命题的是

A

B

C

D

分值: 5分 查看题目解析 >
1

7.某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为 [27.5,30]. 根据直方图,若这200名学生中每周的自习时间不超过小时的人数为164,则的值约为

A

B

C

D

分值: 5分 查看题目解析 >
1

6.已知的展开式中第5项与第7项的二项式系数相等,则奇数项的二项式系数和为

A

B

C

D

分值: 5分 查看题目解析 >
1

5.执行如图所示的程序框图,若输出的值为,则输入的整数

A

B

C

D

分值: 5分 查看题目解析 >
1

8.已知等比数列的前项和,则等于

A

B

C

D

分值: 5分 查看题目解析 >
1

9.已知实数x, y满足,若的最大值为1,则m的值为

A

B2

C1

D

分值: 5分 查看题目解析 >
1

10.已知△的顶点都在半径为的球的球面上,球心到平面的距离为,则球的体积是

A

B

C

D

分值: 5分 查看题目解析 >
1

11.过双曲线的右焦点作直线的垂线,垂足为,交双曲线的左支于点,若,则该双曲线的离心率为

A

B2

C

D

分值: 5分 查看题目解析 >
1

12.定义在的函数的导函数满足,且,则不等式的解集为

A

B

C

D

分值: 5分 查看题目解析 >
填空题 本大题共4小题,每小题5分,共20分。把答案填写在题中横线上。
1

15.已知函数的部分图象如上图所示,则________.

分值: 5分 查看题目解析 >
1

14.一个几何体的三视图如下图所示,则该几何体的体积为________.

分值: 5分 查看题目解析 >
1

13.过抛物线焦点的直线交抛物线于AB两点,若AB的中点M到该抛物线准线的距离为5,则线段AB的长度为_______.

分值: 5分 查看题目解析 >
1

16.在数列的每相邻两项之间插入此两项的积,形成新的数列,这样的操作叫做该数列的一次“扩展”. 将数列1,2进行 “扩展”,第一次得到数列1,2,2;第二次得到数列1,2,2,4,2;…. 设第次“扩展”后所得数列为,并记,则数列的通项公式为__________.

分值: 5分 查看题目解析 >
简答题(综合题) 本大题共80分。简答应写出文字说明、证明过程或演算步骤。
1

平面直角坐标系中,过椭圆)焦点的直线两点,的中点,且的斜率为9.

23.求的方程;

24.的左、右顶点,上的两点,若,求四边形面积的最大值.

分值: 12分 查看题目解析 >
1

已知函数).

25.当时,判断函数的零点个数;

26.若,求的最大值.

分值: 12分 查看题目解析 >
1

如图,四棱柱中,底面,四边形为梯形,,且的中点,过三点的平面记为.

21.证明:平面与平面的交线平行于直线

22.若,求平面与底面所成二面角的大小.

分值: 12分 查看题目解析 >
1

某理财公司有两种理财产品.这两种理财产品一年后盈亏的情况如下(每种理财产品的不同投资结果之间相互独立):

产品                               产品(其中

19.已知甲、乙两人分别选择了产品和产品进行投资,如果一年后他们中至少有一人获利的概率大于,求的取值范围;

20.丙要将家中闲置的10万元钱进行投资,以一年后投资收益的期望值为决策依据,在产品和产品之中选其一,应选用哪个?

分值: 12分 查看题目解析 >
1

已知△的内角所对的边分别为,且.

17.若△为锐角三角形,求的取值范围;

18.若,求△的面积.

分值: 12分 查看题目解析 >
1

已知曲线的参数方程为(为参数).在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,曲线.

27.求曲线的普通方程和的直角坐标方程;

28.若相交于两点,设点,求的值.

分值: 10分 查看题目解析 >
1

设函数).

29.试比较的大小;

30.当时,求函数的图象和轴围成的图形面积.

分值: 10分 查看题目解析 >
  • 上一题
  • 1/23
  • 下一题

点击 “立即下载”

即可下载本试卷,含解析哦

知道啦